
Disclaimer

“This offering is not approved or
endorsed by OpenCFD Limited, the
producer of the OpenFOAM software
and owner of the OPENFOAM® and
OpenCFD® trade marks.”

Introductory OpenFOAM® Course

University of Genoa, DICCA
Dipartimento di Ingegneria Civile, Chimica e Ambientale

From 8th to 12th July, 2013

Your Lecturer

Joel GUERRERO

joel.guerrero@unige.it

	

	

guerrero@wolfdynamics.com
	

Acknowledgements

These slides and the tutorials presented are based upon personal
experience, OpenFOAM® source code, OpenFOAM® user guide,
OpenFOAM® programmer’s guide, and presentations from previous
OpenFOAM® training sessions and OpenFOAM® workshops.

We gratefully acknowledge the following OpenFOAM® users for their
consent to use their material:
•  Hrvoje Jasak. Wikki Ltd.
•  Hakan Nilsson. Department of Applied Mechanics, Chalmers

University of Technology.
•  Eric Paterson. Applied Research Laboratory Professor of Mechanical

Engineering, Pennsylvania State University.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Today’s lecture

1.  C++: A Crash Introduction

Before continuing,
I want to remind you that this is not

a C++ course	

C++: A Crash introduction

My favorite C++ bibliographical references:
•  C++ for Engineers and Scientists.

G. J. Bronson. 2012, Cengage Learning.	
 	

•  Sams Teach Yourself C++ in One Hour a Day.
S. Rao. 2012, Sams Publishing.

•  Sams Teach Yourself C++ in One Hour a Day.
J. Liberty, B. Jones. 2004, Sams Publishing.

•  The C++ Standard Library.
N. Josuttis. 2012, Addison-Wesley.

•  http://www.cplusplus.com/

C++: A Crash introduction

C++ Program Structure

Let us study the basic structure of a C++ program by looking at a simple code
that prints the words Hello world.

#include <iostream>
using namespace std;

// main() is where program execution begins. It is the main function.
// Every program in c++ must have this main function declared

int main ()
{

 cout << "Hello world"; //prints Hello world
 return 0; //returns nothing
}

C++: A Crash introduction

C++: A Crash introduction
C++ Data Types

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

C++: A Crash introduction
C++ Data Types Modifiers

C++ allows the char, int, and double data types to have modifiers preceding
them. A modifier is used to alter the meaning of the base type so that it better fits
the actual needs. The data type modifiers are listed here:

•  signed

•  unsigned
•  long

•  short

The modifiers signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and long can be
applied to double. For example

•  unsigned int y; //4 bytes. Range from 0 to 4294967295

•  signed int y; //4 bytes. Range from -2147483648 to -2147483647

C++: A Crash introduction
Variable Declaration & Initialization

•  You declare the variables by using the C++ data types.

•  You initialize a variable by assigning it a value.

•  To initialize a variable you need to first declare it.
•  All variables that we plan to use must have been declared (and initialized) before

we use them.
•  Take a look a the following examples:

int a, b, c; //Declaration

int aa = 5.12; //Declaration and initialization, it will only read the integer part
int b (2); //Declaration and initialization, this is equivalent to b =2

float pi; //Declaration
pi = 3.14159; //Initialization

C++: A Crash introduction
Scope of Variables

•  All the variables that we intend to use in a program must have been declared
with its type specifier in an earlier point in the code.

•  A variable can be either of global or local scope. A global variable is a variable
declared in the main body of the source code, outside all functions, while a
local variable is one declared within the body of a function or a block.

#include <iostream>
using namespace std;

int a = 4; //global scope variable

// main() is where program execution begins.
int main ()
{

 int b = 4; //local scope variable
 int result;

 result = a*b;

 cout << result << endl; //prints result
 return 0;

}

C++: A Crash introduction
Constants Variables

•  Constants are expressions with a fixed value.

•  Constants variable can be declared by using the #define preprocessor
directive or by using the const prefix with a specific data type. For example,

#include <iostream>
using namespace std;

#define PI 3.14159 //global scope constant
#define NEWLINE '\n’ //global scope constant

int main ()
{

 const float pi = 3.14159; //local scope constant
 float r = 1.0;
 double area_circle, area_circle2;
 area_circle = 2*PI*r;
 area_circle2 = 2*pi*r;
 cout << area_circle << endl; //prints result
 cout << NEWLINE; //insert new line
 cout << area_circle2 << endl; //prints result
 return 0;

}

C++: A Crash introduction
C++ Operators

•  An operator is a symbol that tells the compiler to perform specific mathematical or
logical manipulations. C++ is rich in built-in operators and provides the following type
of operators:

•  Assignment Operator: =
•  Arithmetic Operators: +, -, \, *, %
•  Increase/decrease: ++, --
•  Relational Operators: ==, !=, >, <, >=, <=
•  Logical Operators: &&, ||, !
•  Bitwise Operators: &, |, ^, ~, <<, >>
•  Assignment Operators: +=, -=, *=, /=, %=, <<=, >>=, &=, ^=, |=
•  Miscellaneous Operators: ?, comma (,), arrow (->), sizeof(), and so on.

•  And by the way, the list is not complete.

C++: A Crash introduction
C++ Control Structures

Control structures are portions of program code that contain statements within
them and, depending on the circumstances, execute these statements in a
certain way. There are typically two kinds: conditionals and loops.

•  Conditional structure: if and else

The if keyword is used to execute a statement or block only if a condition is
fulfilled. Its form is:

if (condition) statement

For example:

if (x == 7)
cout << “x is 7";

will print the “x is 7” only if the value stored in the x variable is indeed 7.

C++: A Crash introduction
C++ Control Structures

•  Conditional structure: if and else

If we want more than a single statement to be executed in case that the condition
is true we can specify a block using braces { }:

if (condition) statement
{

}

For example:

 if (x == 7)
{

 cout << “x is ”;
 cout << x;

}

C++: A Crash introduction
C++ Control Structures

•  Conditional structure: if and else

We can additionally specify what we want to do if the condition is not fulfilled by
using the keyword else. Its must be used in conjunction with if, as follows:

if (condition)
 statement1
 else
 statement2

For example:

if (x == 7)

 cout << “x is 7”;
else

 cout << “x is not 7”;

prints on the screen “x is 7” if indeed x has a value of 7, but if it does not, it prints
out “x is not 7”.

C++: A Crash introduction
C++ Control Structures

•  Conditional structure: if and else

The if - else structures can be concatenated with the intention of verifying a range
of values. The following example shows us its use:

if (x > 0)
 cout << “x is positive";

else if (x < 0)
 cout << “x is negative";

else
 cout << “x is 0";

•  Remember that in case that we want more than a single statement to be

executed, we must group them in a block by enclosing them in braces { }.
•  The conditional structures can be nested.
•  It is always a good programming practice to use a single and clear indentation

style.

C++: A Crash introduction
C++ Control Structures

•  Loops: loops have as purpose to repeat a statement a certain number of
times or while a condition is fulfilled.

The while loop
The format is:

while (expression) statement
and it simply repeats the statement while the condition set in expression is true.
For example:

while (n>0)
{

 cout << “n is a positive number”;
 n = n – 1; //We can also use --n

}

C++: A Crash introduction
C++ Control Structures

The do-while loop
The format is:

do statement while (condition)
It does the same as the while loop, except that the condition in the do-while loop
is evaluated after the execution of the statement instead of before. For example:

do
{

 cout << “n is not equal to zero”;
 n = n + 1; //We can also use n++

}
while (n != 0) ;

C++: A Crash introduction
C++ Control Structures

The for loop
The format is:

for (initialization; condition; increase) statement;
It repeat the statement while the condition remains true, like the while loop. The
for loop is designed to allow a counter variable that is initialized at the beginning
of the loop and incremented (or decremented) on each iteration of the loop. For
example:

 for (int = 0; x < 10; x++)
{

 cout << x << “endl”;
}
return 0;

This program will print out the values 0 through 9, each on its own line.

C++: A Crash introduction
C++ Control Structures

In the for loop, the initialization and increase fields are optional. They can remain
empty, but in all cases the semicolon signs between them must be written. For
example we could write:

for (;n<10;)
{

// whatever here...
}

if we want to specify no initialization and no increase. We also could write

 for (;n<10;n++)
 {

// whatever here...
}

if we want to include an increase field but no initialization (maybe because the
variable was already initialized somewhere else).

C++: A Crash introduction
C++ Control Structures

Optionally, using the comma operator (,) we can specify more than one
expression in any of the fields included in a for loop.

The comma operator (,) is an expression separator, it serves to separate more
than one expression where only one is generally expected. For example,
suppose that we want to initialize more than one variable in our loop:

for (n=0, i=100 ; n!=i ; n++, i--)
{

 // whatever here...
}

This loop will execute for 50 times if neither n or i are modified within the loop. n
starts with a value of 0, and i with a value of 100, the condition is n! = i (that is to
say, n is not equal to i). Because n is increased by one and i decreased by one,
the loop's condition will become false after the 50th loop, when both n and i will
be equal to 50.

C++: A Crash introduction
C++ Control Structures

•  Remember that in case that we want more than a single statement to be
executed, we must group them in a block by enclosing them in braces { }.

•  You will also need to declare the initialization and increase (or decrease)
variables.

•  The loops structures can be nested.

•  It is always a good programming practice to use a single and clear indentation
style.

C++: A Crash introduction
Functions

•  A function is a group of statements that together perform a task. Every C++
program has at least one function which is the main () function.

•  You can divide your code into separate functions. How you divide your code
among different functions is up to you.

•  A function declaration tells the compiler about a function's name, return type,
and parameters. A function definition provides the actual body of the function.

•  The C++ standard library provides numerous built-in functions that your
program can call. For example, function strcat () concatenate two strings,
function memcpy () copy one memory location to another location.

•  A function is also knows as a method, sub-routine, procedure, etc.

C++: A Crash introduction
Functions

To use a function, we use the following format:

 type name (parameter1, parameter2, ...) { statements }

where:

•  type is the data type specifier of the data returned by the function.

•  name is the identifier by which it will be possible to call the function.
•  parameters (as many as needed): they allow to pass arguments to the

function when it is called. The different parameters are separated by commas.
Each parameter consists of a data type specifier followed by an identifier, like
any regular variable declaration (for example: int x).

•  statements is the function's body. It is a block of statements surrounded by
braces { }.

C++: A Crash introduction
Functions

For example:

 #include <iostream>
using namespace std;

int addition (int a, int b) //function declaration
{

 int c; //function definition
 c=a+b; //function definition
 return (c); //function definition

}

int main ()
{

 int answer;
 answer = addition (5,3); //call to function addition
 cout << “The result is “ << answer;
 return 0;

}

Functions

•  We can pass the variables or arguments to a function by value or by
reference.

•  When calling a function and passing the variables by value, what we pass to
the function are copies of their values but never the variables themselves.

•  When passing the variables by value, any modification to the passed variables
within the function will not have any effect in the values of the variables
outside it.

•  When a variable is passed by reference we are not passing a copy of its
value, but we are somehow passing the variable itself to the function and any
modification that we do to the local variables will have an effect in their
counterpart variables passed as arguments in the call to the function.

•  Passing by reference is also an effective way to allow a function to return
more than one value.

C++: A Crash introduction

int addition (int a, int b)
{

 some instructions here
}

int main ()
{
answer = addition (5 , 3);
}

Functions. Arguments passed by value.

C++: A Crash introduction

First call of function addition in
main function

Return value of function
addition to main function

int addition (int a, int b)
{

 some instructions here
}

int main ()
{
answer = addition (5 , 3);
}

int addition (int& a, int& b)
{

 some instructions here
}

int main ()
{
answer = addition (5 , 3);
}

Functions. Arguments passed by reference.

C++: A Crash introduction

First call of function addition in
main function

Return value of function
addition to main function

int addition (int& a, int& b)
{

 some instructions here
}

int main ()
{
answer = addition (5 , 3);
}

Functions

•  The scope of variables declared within a function or any other inner block is
only their own function or their own block and cannot be used outside of them.
Therefore, the scope of local variables is limited to the same block level in
which they are declared.

•  Nevertheless, we also have the possibility to declare global variables; these
are visible from any point of the code, inside and outside all functions.

•  If a function does not returns a value, it should be declared as a void function.

•  Two different functions can have the same name only if their parameter types
or number of parameters are different, this practice is called overloading
functions.

C++: A Crash introduction

C++: A Crash introduction
Functions

Declaring functions (both formats are equivalent):

 #include <iostream>

using namespace std;

int addition (int a, int b) //function declaration
{

 int c; //function definition
 c=a+b; //function definition
 return (c); //function definition

}

int main ()
{

int answer;
answer = addition (5,3); //call to function addition
cout << “The result is “ << answer;
 return 0;

}

#include <iostream>
using namespace std;

int addition (int , int); //function prototype
//int addition (int a, int b); //function prototype

int main ()
{

int answer;
answer = addition (5,3); //call to function addition
 cout << “The result is “ << answer;
 return 0;

}

int addition (int a, int b) //function declaration
{

 int c; //function definition
 c=a+b; //function definition
 return (c); //function definition

}

C++: A Crash introduction
Arrays

An array is a fixed number of elements of the same type stored sequentially in
memory. Therefore, an integer array holds some number of integers, a character
array holds some number of characters, and so on. The size of the array is
referred to as its dimension. To declare an array in C++, we write the following:

type arrayName [dimension];

where type is a valid data type (int, float, etc), arrayName is a valid identifier.
and dimension (which is always enclosed in square brackets []) specifies the
number of elements contained in the array.

To declare an integer array named coor, which is made up of four elements, we
write

 int coor [4];

C++: A Crash introduction
Arrays

Like normal variables, the elements of an array must be initialized before they
can be used; otherwise we will almost certainly get unexpected results in our
program. There are several ways to initialize the array. One way is to declare the
array and then initialize some or all of the elements:

int coor [4];
coor [0] = 1;
coor [1] = 0;
coor [2] = 3;
coor [3] = 7;

Another way is to initialize some or all of the values at the time of declaration:
 int coor [4] = { 1, 0, 3, 7 };

Sometimes it is more convenient to leave out the size of the array and let the
compiler determine the array's size for us, based on how many elements we give
it:

 int coor [] = { 1, 0, 3, 7, 2, 5, 2, 11 };
Here, the compiler will create an integer array of dimension 8.

C++: A Crash introduction
Arrays

C++ also supports the creation of multidimensional arrays, through the addition of
more than one set of brackets. Thus, a two-dimensional array may be created by
the following:

 type arrayName [dimension1][dimension2];
The array will have dimension1 x dimension2 elements of the same type. The
first index indicates which of dimension1 sub-arrays to access, and then the
second index accesses one of dimension2 elements within that sub-array.
Initialization and access thus work similarly to the one-dimensional case:

int coor [2][4];
coor [0][0] = 1;
coor [0][1] = 0;
coor [0][2] = 3;
coor [0][3] = 7;
coor [1][0] = 2;
coor [1][1] = 5;
coor [1][2] = 2;
coor [1][3] = 11;

C++: A Crash introduction
Arrays

The array can also be initialized at declaration in the following ways:

 int coor [2][4] = { 1, 0, 3, 7, 2, 5, 2, 11 };
 int coor [2][4] = { { 1, 0, 3, 7 } , { 2, 5, 2, 11 } };

Note that dimensions must always be provided when initializing multidimensional
arrays, as it is otherwise impossible for the compiler to determine what the
intended element partitioning is.

Multidimensional arrays are merely an abstraction for programmers, as all of the
elements in the array are sequential in memory. Declaring int coor[2][4]; is the
same thing as declaring int coor[8];.

C++: A Crash introduction
Arrays

To initialize all elements of a multidimensional array to 0 (or any other value), we
do as follows:

 int coor [2][20] = { 0 };
Similar for a normal array:

 int coor [4] = { 0 };

Arrays can be also initialized (and accessed) by using for loops, as follows:
 int coor [2][20];
for (int i = 0; i < 2; i++)
{

 for (int j = 0; j < 20; j++)
 {
 coor[i][j] = 0;
 }

}

C++: A Crash introduction
Arrays

Accessing the values of an array. In any point of a program in which an array
is visible, we can access the value of any of its elements individually as if it was a
normal variable, thus being able to both read and modify its value. The format is
as simple as:

array_name[index]
Following the previous examples in which coor has 4 elements and each of those
elements was of type int,

 int coor[4] = { 1, 0, 3, 7 };
For example, to store the value 30 in the third element of coor, we write the
following statement:

 coor[2] = 30;
To pass the value of the third element of coor to a variable named a, we write:

 a = coor[2];
Therefore, the expression coor[2] is for all purposes like a variable of type int.

C++: A Crash introduction
Arrays

Arrays as parameters. If we want to pass a single-dimension array as an
argument in a function, the only thing we need to do when declaring the function
is to specify in its parameters the element type of the array, an identifier and a
pair of void square brackets []. For example, the function:

void myFunction(int param[])
{

//some instructions here
}

accepts a parameter of type array of int, named param. In order to pass to this
function an array declared as

 int coor [100];

It would be enough to write a call like this:

 myFunction (coor);

C++: A Crash introduction
Arrays

For example:

#include <iostream>
using namespace std;

void printArray (int arg [], int length)
{

 for (int n=0; n < length; n++)
 {
 cout << arg [n] << endl;
 }
 cout << endl;

}

int main ()
{

 int firstArray [] = {1, 2, 3, 4};
 int secondArray [] = {2, 6, 12, 10, 0};
 printArray (firstArray, 4);
 printArray (secondArray, 5);
 return 0;

}

In this program, the first parameter (int arg []) in the function printArray, accepts
any array whose elements are of type int, whatever its length. For this reason we
have included a second parameter that tells the function the length of each array
that we pass. This allows the for loop to know the range to iterate.

C++: A Crash introduction
Arrays

•  In a function declaration it is also possible to include multidimensional arrays.
For a two dimensions array, the format is: type name [] [dimension2].

•  For example, a function with a multidimensional array as argument could be:

 void myFunction (int param [][4])
Notice that the first brackets are left blank while the following ones are not.
This is because the compiler must be able to determine within the function
which is the size of each additional dimension.

•  Alternatively, you could also define the dimension of the array when passing it
to the function as a parameter, as follows:

 void myFunction (int param [2][4])
 void myFunction (int param [4])

•  When passing an array to a function, we pass the starting address of the
array. As a consequence of this we have direct access to the array. This
means that any change we do to the array passed to the function is a change
to the original array.

C++: A Crash introduction
Pointers

•  Pointers are one of the most powerful and confusing aspects of the C++
language. Some C++ tasks are performed more easily with pointers, and other
C++ tasks, such as dynamic memory allocation, can not be performed without
them.

•  A pointer is a variable that holds the address of another variable. Like any
variable, we must declare a pointer before we can use it. The general form of
a pointer variable declaration is:

type *var-name;
Here, type is the pointer's base type; it must be a valid C++ type and var-
name is the name of the pointer variable. The asterisk is being used to
designate a variable as a pointer. Some examples of pointers are:

int *ip; // pointer to an integer double
double *dp; // pointer to a double float
float* fp; // pointer to a float char
char * ch // pointer to character

C++: A Crash introduction
Pointers

•  Since pointers only hold addresses, when we assign a value to a pointer, the
value has to be an address. To get the address of a variable, we use the
ampersand (&) operator which denotes an address in memory.

 int nValue = 5;
int *pnPtr = &nValue; // assign address of nValue to pnPtr
cout << &nValue << endl; // print the address of variable nValue
cout << pnPtr << endl; // print the address that pnPtr is

 holding
When the above code is compiled and executed, its output is (on my computer):

0012FF7C
0012FF7C

C++: A Crash introduction
Pointers

•  Using Pointers (Dereferencing pointers): The other operator that is
commonly used with pointers is the dereference operator (*). A dereferenced
pointer evaluates the contents of the address it is pointing to.

int nValue = 5;

cout << &nValue; // prints address of nValue

cout << nValue; // prints contents of nValue

int *pnPtr = &nValue; // pnPtr points to nValue
cout << pnPtr; // prints address held in pnPtr, which is &nValue

cout << *pnPtr; // prints contents pointed to by pnPtr, which is contents of nValue

The above program prints (on my computer)
0012FF7C
5

0012FF7C

5

In other words, when pnPtr is assigned to &nValue: pnPtr is the same as
&nValue and *pnPtr is the same as nValue

C++: A Crash introduction
Pointers

Finally, we can also:

•  Pass pointers to functions.
•  Return pointers from functions.

•  Use pointers to pointers.

•  Use an array of pointer.
•  Perform arithmetic operations on a pointer (++, --, +, and -) and pointer

comparisons (==, <, and >).

C++: A Crash introduction
Namespaces

•  Namespaces address the problem of naming conflicts between different
pieces of code.

•  For example, we might be writing some code that has a function named
myFunction (). If we decide to use a third-party library, which also has a
myFunction () function. The compiler has no way of knowing which version
of myFunction () we are referring to within our code. We can not change the
library’s function name, and it would be a big pain to change your own.

•  A namespace is designed to overcome this difficulty and is used to
differentiate similar functions, classes, variables etc., that have the same
name available in different libraries. Using namespace, we can define the
context in which names are defined. In essence, a namespace defines a
scope.

•  OpenFOAM® uses namespaces.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

C++: A Crash introduction
Namespaces

#include <iostream>
using namespace std;

namespace first_space // first name space
{

 void func()
 {
 cout << "Inside first_space" << endl;
 }

}
namespace second_space // second name space
{

 void func()
 {
 cout << "Inside second_space" << endl;
 }

}

int main ()
{
 // Calls function from first name space.
 first_space::func();

 // Calls function from second name space.
 second_space::func();

 return 0;
}

•  A namespace definition begins with the
keyword namespace followed by the
namespace name as follows:

namespace namespace_name
{

 // code declarations
 }

•  To call the namespace-enabled version of
either function or variable, prepend the
namespace name as follows:

namespace_name::code;
// code could be variable or
function.

C++: A Crash introduction
Defined Data Types (typedef)

•  C++ allows the definition of our own types based on other existing data types.
We can do this using the keyword typedef, whose format is:

 typedef existing_type new_type_name ;
where existing_type is a C++ fundamental or compound type and
new_type_name is the name for the new type. For example:

 typedef vector<double> doubleVector;
In this way:

 vector<double> a(8);
is equivalent to:

 doubleVector a(8);
•  typedef does not create different types. It only creates synonyms of existing

types.

•  Typedefs make the code easy to read. OpenFOAM® uses them a lot!

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

C++: A Crash introduction
Classes

•  A class is nothing else but an user defined data type (I like to see them as
user defined data types on steroids).

•  A class is used to specify the form of an object and it combines data
representation and methods for manipulating that data into one neat package.
That is, in one class I can declare the variables type and what I want to do
with those variables (functions).

•  The data and functions within a class are called members of the class.

•  The members of the class can be private, protected, or public access. These
access specifier determine how the members are accessed.

•  By default, all members of a class have private access for all its members.

C++: A Crash introduction
Classes

•  Classes are generally declared using the keyword class, with the following
format:

class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...

} object_names;

where class_name is a valid identifier for the class, object_names is an
optional list of names for objects of this class. The body of the declaration can
contain members, that can be either data or function declarations, and
optionally access specifiers.

C++: A Crash introduction
Classes

•  An access specifier is one of the following three keywords: private, public or
protected. These specifiers modify the access rights that the members
following them acquire:

•  private members of a class are accessible only from within other
members of the same class or from their friends.

•  protected members are accessible from members of their same class
and from their friends, but also from members of their derived
classes.

•  public members are accessible from anywhere where the object is
visible.

By default, all members of a class declared with the class keyword have
private access for all its members.

C++: A Crash introduction
Classes

•  For example:
class CRectangle
{

 int x, y;
 public:
 void set_values (int , int);
 int area (void);

} rect;

Declares a class (i.e., a data type) called CRectangle and a object (i.e., a
variable) of this class called rect. This class contains four members: two data
members of type int (member x and member y) with private access, and two
member functions with public access: set_value () and area (), of which for now
we have only included their declaration, not their definition.

C++: A Crash introduction
Classes

•  In the previous declaration of the CRectangle class and rect object; we can
access any public member of the object rect as if they were normal functions
or normal variables. This is done by using the dot (.) operator in combination
with the name of the object and the name of the member. For example:

rect.set_values (3,4);
myarea = rect.area();

•  In the next slide we show a complete program for the class CRectangle,
where we declare the class with all its members, then the functions definition
and then we access the class within the main function.

C++: A Crash introduction
Classes

#include <iostream>
using namespace std;

class CRectangle
{

 int x,y;
public:

 void set_values (int , int); //Prototype function
 int area () //Member function
 {
 return (x*y);
 }

};

//Definition of the member function
void CRectangle::set_values (int a , int b)
{

 x = a;
 y = b;

}

int main ()
{

 CRectangle rect;
 rect.set_values (3,4);
 cout<<“area: “<< rect.area ();
 return 0;

}

•  The most important new feature in this
program is the scope operator (::), included
in the definition of set_values (). It is used
to define a member of a class from outside
the class definition itself.

•  You may notice that the definition of the
member function area () has been included
directly within the definition of the class.

•  The only difference between defining a class
member function within its class or to
include only the prototype and later its
definition, is that in the first case the function
is considered an inline member function,
while in the second case it is a normal
member function (not-inline). This supposes
no difference in behavior.

C++: A Crash introduction
Class Constructor

#include <iostream>
using namespace std;

class CRectangle
{

 int x,y;
public:

 CRectangle (int , int); //Constructor
 int area () //Member function
 {
 return (x*y);
 }

};

//Definition of the constructor function
CRectangle::CRectangle (int a , int b)
{

 x = a;
 y = b;

}

int main ()
{

 CRectangle recta (3,4);
 CRectangle rectb (5,12);
 cout<<“recta area: “<< recta.area () << endl;
 cout<<“rectb area: “<< rectb.area () << endl;
 return 0;

}

•  Objects generally need to initialize variables
or assign dynamic memory during their
creation to become operative and to avoid
returning unexpected values during their
execution.

•  In order to initialize classes, a special
function called constructor is used. It is
automatically called whenever a new object
of the class is created.

•  This constructor function must have the
same name as the class and can not have
any return type, not even void.

•  Constructor can not be called explicitly as if
they were regular member functions. They
are only executed when a new object of
that class is created.

C++: A Crash introduction
Class Destructors

•  We can also use a special function called
destructor. A destructor does the opposite
of a constructor. It is automatically called
when an object is destroyed, either because
its scope of existence has finished or
because it is an object dynamically
assigned and it is released using the
operator delete.

•  As for constructors, the destructors must
have the same name as the class, but
preceded with a tilde sign (~) and it must
also return no value.

•  The use of destructors is especially suitable
when an object assigns dynamic memory
during its lifetime and at the moment of
being destroyed we want to release the
memory that the object was allocated.

class CRectangle
{

 int x, y;
public:

 CRectangle (int , int); //Constructor
 ~CRectangle (); //Destructor
 int area () //Member function
 {
 return (x*y);
 }

};
//Definition of the constructor function
CRectangle::CRectangle (int a , int b)
{

 x = a;
 y = b;

}
//Definition of the constructor function
CRectangle::~CRectangle ()
{

 //delete x; //for dynamic memory
 //delete y; //for dynamic memory

}

C++: A Crash introduction
Classes

•  If we do not declare any constructor and destructor in a class definition, the
compiler assumes the class to have a default constructor and destructor with
no arguments.

•  It is perfectly valid to create pointers that point to classes. We simply have to
consider that once declared, a class becomes a valid data type, so we can
use the class name as the type for the pointer. For example:

CRectangle * prect;
is a pointer to an object of class CRectangle.

•  In order to refer directly to a member of an object pointed by a pointer we can
use the arrow operator (->) of indirection.

prect -> set_values (2,4)
	

•  In OpenFOAM® there is a wide number of classes defined. They are
used to define, discretize and solve PDE systems.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

C++: A Crash introduction
Templates

Templates are the foundation of generic programming which involves writing
code in a way that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function.

•  Function templates: functions templates are special functions that can

operate with generic types. This allows us to create a function template whose
functionality can be adapted to more than one type or class without repeating
the entire code for each type.

•  Class templates: we can also write class templates, so that a class can have
members that use template parameters as types.

C++: A Crash introduction
Function Templates

•  The general form of a template function definition is as follows:

template <class identifier> identifier function_name (parameter list)
{

 // body of function
}

•  For example, to create a template function that adds two numbers:

template <class T> T addval(T a, T b)
{

 return (a + b);
}

Here, we have created a template function with T as its identifier. The
template identifier represents a type that has not yet been specified. The
function addval, returns the addition of the two parameter of this still
undefined type.

C++: A Crash introduction
Function Templates

•  To use this function template, we use the following format for the function call:

function_name <type> (parameter list);

•  For example, to call the function addval to add two variables of type int:

int x, y;
addval <int> (x,y);

When the compiler encounters this call to a template function, it uses the
template to automatically generate a function replacing each appearance of T
by the type passed as the actual template parameter (int in this case) and then
calls it. This process is automatically performed by the compiler and is invisible
to the programmer.

•  In the next slide we show the whole program

C++: A Crash introduction
Function Templates

#include <iostream>
using namespace std;

template <class T>
T addval(T a, T b)
{

 T result;
 result = a + b;
 return (result);

}

int main ()
{

 int k = 6, m = 4, p;
 double n = 3.14, r = 13.01, u;
 p = addval <int> (k,m);
 u = addval <double> (n,r);
 cout << “The result is “ << p << endl;
 cout << “The result is “ << u << endl;
 return 0;

}

In this case, we have used T as the template
identifier, but you can use any name identifier
you like.

In this example, we used the function template
addval twice. The first time with arguments of
type int and the second one with arguments of
type double. The compiler has instantiated and
then called each time the appropriate version of
the function.

As you can see, the type T is used within the
addval template function even to declare new
objects of that type:

 T result;

C++: A Crash introduction
Function Templates

•  We can also define function templates that accept more than one type
parameter, simply by specifying more template identifiers between the angle
brackets < >. For example

template <class T, class U> T addval(T a, U b)
{

 T result;
 result = a + b;
 return (result);

}
In this case, our function template addval (), accepts two identifiers of
different types and returns an object of the same type as the first identifier that
is passed. After this declaration, we can call addval():

int x;
double y;
addval <int, double> (x,y);

C++: A Crash introduction
Class Templates

•  The general form of a template class definition is as follows:

template <class identifier> class class_name
{

 // body of the class
}

•  For example, to create a template class:
template <class T>
class twovals
{

 T values [2];
 public:
 twovals (T first, T second)
 {
 values [0] = first;
 values [1] = second;
 }

} ;

C++: A Crash introduction
Function Templates

•  The class template that we have just defined, stored two elements of any valid
type. For example, if we want to declare an object of this class to store two
integer values with the values 100 and 25:

twovals<int> my_object (100,25);
•  This same class template can be used to create an object to store any other

type

 twovals<int> my_object (3.14159, 343.3);

•  The only member function in the previous class template has been defined
inline within the class declaration itself. In case that we want to define a
function member outside the declaration of the class template, we must
always precede that definition with the template < > prefix:

•  In the next slide we show a sample program.

#include <iostream>
using namespace std;

template <class T>
class twovals
{

 T a, b;
 public:
 twovals (T first, T second)
 {
 a = first;
 b = second;
 }
 T getmax ();

} ;
template <class T>
T twovals <T>::getmax ()
{

 T retval;
 retval = a>b ? a : b;
 return retval;

}

int main ()
{

 twovals <int> myobject (100,75);
 cout << myobject.getmax () << endl;
 return 0;

}

C++: A Crash introduction
Class Templates

In this case, we have used T as the template
identifier, but you can use any name identifier
you like.

Notice the syntax of the definition of member
function getmax ()

template <class T>
T twovals <T>::getmax ()

Confused by so many T?. There are three T in
this declaration. The first one is the template
identifier. The second T refers to the type
returned by the function. And the third T (the
one between angle brackets < >) is also a
requirement, it specifies that this function’s
template identifier is also the class template
identifier.

C++: A Crash introduction
Class and Functions Templates

•  If you look for the definition of template in a dictionary, you will find a definition
that is similar to the following:

 “a template is a model that serves as a pattern for creating similar objects”.

•  One type of template that is very easy to understand is that of a stencil. A
stencil is an object (e.g. a piece of cardboard) with a shape cut out of it (e.g.
the letter J). By placing the stencil on top of another object, then spraying paint
through the hole, you can very quickly produce stenciled patterns in many
different colors.

•  Note that you only need to create a given stencil once, you can then use it as
many times as you like to create stenciled patterns in whatever colors you like.

•  Even better, you don’t have to decide the color of the stenciled pattern you
want to create until you decide to actually use the stencil.

C++: A Crash introduction
Class and Functions Templates

•  At a first glance Class and Functions Templates are difficult to understand, you
just need to get use with the syntax.

•  In C++, templates serve as a pattern for creating other similar functions or
classes.

•  The basic idea behind templates in C++ is to create functions and classes
without having to specify the exact type of some or all of the variables.

•  Instead, we define the function or class using placeholder types, called
template type parameters (identifiers). Once we have created a function using
these placeholder types, we have effectively created a function stencil or class
stencil.

•  To make the code easier to read OpenFOAM® re-defines the templated class
names, for instance:
 typedef List<vector> vectorList;

so that an object of the class template List of type vector is called vectorList.

•  OpenFOAM® uses class and function templates a lot!

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

C++: A Crash introduction
 C++ Standard Template Library (STL)

•  The C++ STL library is a powerful set of C++ template classes that provide
general purpose templated classes and functions that implement many
popular and commonly used algorithms and data structures like vectors, lists,
queues, and stacks.

•  The core of the C++ STL library is made up of three well-structured
components:

•  Containers: they are used to manage collections of objects of a certain
kind. There are several different types of containers like deque, list,
vector, etc.

•  Algorithms: they act on containers. They provide the means by which
you will perform initialization, sorting, searching, and transforming of the
contents of containers.

•  Iterators: are used to step through the elements of collections of objects.
•  OpenFOAM® uses its own template library, which is STL conforming. In

principle it works similar to the STL library.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

C++: A Crash introduction
 C++ Standard Template Library (STL)

•  A full discussion about all the three C++ STL components is outside of the
scope of this lecture. From now on, keep in mind that all the three components
have a rich set of pre-defined functions which help us in doing complicated
tasks in a very efficient and easy fashion.

•  Let us take a look at the following program to demonstrates the vector
container (a C++ Standard Template) which is similar to an array with an
exception that it automatically handles its own storage requirements in case it
grows (next slide).

C++: A Crash introduction
 C++ Standard Template Library (STL)

#include <iostream>
#include <vector>
using namespace std;

int main()
{

// create a templated vector object to store int
vector<int> vec;
int i;

// display the original size of vec
cout << "vector size = " << vec.size() << endl;

// push 5 values into the vector
for(i = 0; i < 5; i++)
{

 vec.push_back(i);
 }

 // display extended size of vec
 cout << "extended vector size = " << vec.size()
<< endl;

 // access 5 values from the vector
 for(i = 0; i < 5; i++)
 {
 cout << "value of vec [" << i << "] = " << vec[i]
<< endl;
 }

 // use iterator to access the values
 vector<int>::iterator v = vec.begin();

 while(v != vec.end())
 {
 cout << "value of v = " << *v << endl;
v++;
 }

return 0;
}

First part of the code Second part of the code

C++: A Crash introduction

•  In the $path_to_openfoamcourse/c++_tuts folder, you will find the
source code of all the examples we illustrated in the previous slides.

•  To compile them:
•  g++ file_name.C -o executable_name
•  ./executable_name

•  Take your time, and try to understand the concepts implemented in
these examples.

•  Also, try to get familiar with the syntax.

C++: A Crash introduction

C++ is a complex programming language,
rich in features. OpenFOAM® use all C++
features.

OpenFOAM® is an excellent piece of C++
and software engineering. Decent piece of
CFD code.

H. Jasak
“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Mesh generation using open source tools

Additional tutorials
In the folder $path_to_openfoamcourse/c++_tuts, you will find many tutorials,
try to go through each one to understand the basic concepts of C++.

Thank you for your attention

