
Disclaimer

“This offering is not approved or
endorsed by OpenCFD Limited, the
producer of the OpenFOAM software
and owner of the OPENFOAM® and
OpenCFD® trade marks.”

Introductory OpenFOAM® Course

University of Genoa, DICCA
Dipartimento di Ingegneria Civile, Chimica e Ambientale

From 8th to 12th July, 2013

Your Lecturer

Joel GUERRERO

joel.guerrero@unige.it

	

	

guerrero@wolfdynamics.com 	

Acknowledgements

These slides and the tutorials presented are based upon personal
experience, OpenFOAM® source code, OpenFOAM® user guide,
OpenFOAM® programmer’s guide, and presentations from previous
OpenFOAM® training sessions and OpenFOAM® workshops.

We gratefully acknowledge the following OpenFOAM® users for their
consent to use their material:
•  Hrvoje Jasak. Wikki Ltd.
•  Hakan Nilsson. Department of Applied Mechanics, Chalmers

University of Technology.
•  Eric Paterson. Applied Research Laboratory Professor of Mechanical

Engineering, Pennsylvania State University.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU
4.  Hands-on session

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU
4.  Hands-on session

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
The method of parallel computing used by OpenFOAM® is known as
domain decomposition, in which the geometry and associated fields are
broken into pieces and distributed among different processors.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Shared memory architectures – Workstations and portable computers

Distributed memory architectures – Cluster and super computers

Running in parallel

Some facts about running OpenFOAM® in parallel:

•  Applications generally do not require parallel-specific coding. The
parallel programming implementation is hidden from the user.

•  Most of the applications and utilities run in parallel.

•  If you write a new solver, it will be in parallel (most of the times).

•  I have been able to run in parallel up to 4096 processors.

•  I have been able to run OpenFOAM® using single GPU and multiple
GPUs.

•  Do not ask me about scalability, that is problem/hardware specific.

•  If you want to learn more about MPI and GPU programming, do not
look in my direction.

•  Did I forget to mention that OpenFOAM® is free.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel

To run OpenFOAM® in parallel you will need to:
•  Decompose the domain. To do so we use the decomposePar utility.

You also will need a dictionary named decomposeParDict which is
located in the system directory of the case.

•  Distribute the jobs among the processors or computing nodes. To do
so, OpenFOAM® uses the public domain OpenMPI implementation of
the standard message passing interface (MPI). By using MPI, each
processor runs a copy of the solver on a separate part of the
decomposed domain.

•  Finally, the solution is reconstructed to obtain the final result. This is
done by using the reconstrucPar utility.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Domain Decomposition

•  The mesh and fields are decomposed using the decomposePar utility.

•  The main goal is to break up the domain with minimal effort but in
such a way to guarantee a fairly economic solution.

•  The geometry and fields are broken up according to a set of
parameters specified in a dictionary named decomposeParDict that
must be located in the system directory of the case.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Domain Decomposition

•  In the decomposeParDict file the user must set the number of

domains in which the case should be decomposed. Usually it
corresponds to the number of cores available for the calculation.

•  numberOfSubdomains NP;
where NP is the number of core/processors.

•  The user has a choice of seven methods of decomposition, specified
by the method keyword.

•  On completion, a set of subdirectories will have been created, one for
each processor. The directories are named processorN where N = 0,
1, 2, 3, and so on. Each directory contains the decomposed fields.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Domain Decomposition

•  simple: simple geometric decomposition in which the domain is split

into pieces by direction.

•  hierarchical: Hierarchical geometric decomposition which is the
same as simple except the user specifies the order in which the
directional split is done.

•  manual: Manual decomposition, where the user directly specifies the
allocation of each cell to a particular processor.

•  structured
•  multiLevel

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Domain Decomposition

•  scotch: requires no geometric input from the user and attempts to

minimize the number of processor boundaries (similar to metis).

•  metis: requires no geometric input from the user and attempts to

minimize the number of processor boundaries.
•  parMetis: MPI-based version of METIS with extended functionality.

Not supported anymore

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
We will now run a case in parallel. From now on follow me.
•  Go to the $path_to_openfoamcourse/parallel_tut/rayleigh_taylor

folder. In the terminal type:
•  cd $path_to_openfoamcourse/parallel_tut/rayleigh_taylor/c1
•  blockMesh
•  checkMesh
•  cp 0/alpha1.org 0/alpha1
•  funkySetFields -time 0

(if you do not have this tool, copy the file alpha1.init to alpha1.
The file is located in the directory 0)

•  decomposePar
•  mpirun -np 8 interFoam -parallel
Here I am using 8 processors. In your case, use the maximum number of processor
available in your laptop, for this you will need to modify the decomposeParDict
dictionary located in the system folder. Specifically, you will need to modify the entry
numberOfSubdomains, and set its value to the number of processors you want to use.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
We will now run a case in parallel. From now on follow me.
•  After the simulation is finish, type in the terminal:

•  paraFoam -builtin
To directly post-process the decomposed case.

Alternatively, you can reconstruct the case and post-process it:

•  reconstructPar
•  paraFoam

To post-process the reconstructed case, it will reconstruct all time-steps
saved.

Both of the methods are valid, but the first one does not require to
reconstruct the case.
More about post-processing in parallel in the next slides.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
We will now run a case in parallel. From now on follow me.

•  Notice the syntax used to run OpenFOAM® in parallel:

•  mpirun -np 8 solver_name -parallel

where mpirun is a shell script to use the mpi library, -np is the number
of processors you want to use, solver_name is the OpenFOAM®
solver you want to use, and -parallel is a flag you shall always use if
you want to run in parallel.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel

•  Almost all OpenFOAM® utilities for post-processing can be run in
parallel. The syntax is as follows:

•  mpirun -np 2 utility -parallel
(notice that I am using 2 processors)

•  When post-processing cases that have been run in parallel the user
has three options:
•  Reconstruction of the mesh and field data to recreate the

complete domain and fields.
•  reconstructPar
•  paraFoam

	

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel

•  Post-processing each decomposed domain individually
•  paraFoam -case processor0

To load all processor folders, the user will need to manually create the
file processorN.OpenFOAM (where N is the processor number) in each
processor folder and then load each file into paraFoam.

•  Reading the decomposed case without reconstructing it. For this
you will need to:

•  paraFoam -builtin
(this will use a paraFoam version that will let you read a
decomposed case or read a reconstructed case)

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Let us post-process each decomposed domain individually. From now on
follow me.
•  Go to the $path_to_openfoamcourse/parallel_tut/yf17 folder. In

the terminal type:
•  cd $path_to_openfoamcourse/parallel_tut/yf17

In this directory you will find two folders, namely hierarchical and scotch.
Let us decompose both geometries and visualize the partitioning. Let us
start with the scotch partitioning method. In the terminal type:

•  cd $path_to_openfoamcourse/parallel_tut/yf17/scotch
•  decomposePar

By the way, we do not need to run this case. We just need to
decompose it to visualize the partitions.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Let us post-process each decomposed domain individually. From now on
follow me.

•  cd $path_to_openfoamcourse/parallel_tut/yf17/scotch
•  decomposePar
•  touch processor0.OpenFOAM
•  touch processor1.OpenFOAM
•  touch processor2.OpenFOAM
•  touch processor3.OpenFOAM
•  cp processor0.OpenFOAM processor0
•  cp processor1.OpenFOAM processor1
•  cp processor2.OpenFOAM processor2
•  cp processor3.OpenFOAM processor3
•  paraFoam

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel

•  In paraFoam open each *.OpenFOAM file within the processor*
directory. By doing like this, we are opening the mesh partition for
each processor. Now, choose a different color for each set you just
opened, and visualize the partition for each processor.

•  Now do the same with the directory hierarchical, and compare both
partitioning methods.

•  If you partitioned the mesh with many processors, creating the files
*.OpenFOAM manually can be extremely time consuming, for doing
this in an automatic way you can create a small shell script.

•  Also, changing the color for each set in paraFoam can be extremely
time consuming, for automate this you can write a python script.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in parallel
Decomposing big meshes

•  One final word, the utility decomposePar does not run in parallel. So,
it is not possible to distribute the mesh among different computing
nodes to do the partitioning in parallel.

•  If you need to partition big meshes, you will need a computing node
with enough memory to handle the mesh. I have been able to
decompose meshes with up to 300.000.000 elements, but I used a
computing node with 512 gigs of memory.

•  For example, in a computing node with 16 gigs of memory, it is not
possible to decompose a mesh with 30.000.000; you will need to use
a computing node with at least 32 gigs of memory.

•  Same applies for the utility reconstructPar.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU
4.  Hands-on session

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in a cluster using a job scheduler

•  Running OpenFOAM® in a cluster is similar to running in a normal
workstation with shared memory.

•  The only difference is that you will need to launch your job using a job
scheduler.

•  Common job schedulers are:
•  Terascale Open-Source Resource and Queue Manager

(TORQUE).
•  Simple Linux Utility for Resource Management (SLURM).
•  Portable Batch System (PBS).
•  Sun Grid Engine (SGE).
•  Maui Cluster Scheduler.
•  BlueGene LoadLeveler (LL).

•  Ask your system administrator the job scheduler installed in your
system. Hereafter I will assume that you will run using PBS.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in a cluster using a job scheduler

•  To launch a job in a cluster with PBS, you will need to write a small
script file where you tell to the job scheduler the resources you want
to use and what you want to do.

#!/bin/bash

Simple PBS batch script that reserves 8 nodes and runs a
MPI program on 64 processors (8 processor on each node)
The walltime is 24 hours !

#PBS -N openfoam_simulation //name of the job
#PBS -l nodes=16,walltime=24:00:00 //max execution time
#PBS -m abe -M joel.guerrero@unige.it //send an email as soon as the job is launch or

 terminated

cd PATH_TO_DIRECTORY //go to this directory

#decomposePar //decompose the case, this line is commented

mpirun –np 128 pimpleFoam -parallel > log //run parallel openfoam

The green lines are not PBS comments, they are comments inserted in this slide.
PBS comments use the numeral character (#).
 “This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in a cluster using a job scheduler

•  To launch your job you need to use the qsub command (part of the
PBS job scheduler). The command will send your job to queue.
•  qsub script_name

•  Remember, running in a cluster is no different from running in your

workstation or portable computer. The only difference is that you
need to schedule your jobs.

•  Depending on the system current demand of resources, the resources
you request and your job priority, sometimes you can be in queue for
hours, even days, so be patient and wait for your turn.

•  Remember to always double check your scripts.
•  Finally, remember to plan how you will use the resources available.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running in a cluster using a job scheduler
•  For example, if each computing node has 8 gigs of memory available

and 8 cores. You will need to distribute the work load in order not to
exceed the maximum resources available per computing node.

•  So if you are running a simulation that requires 32 gigs of memory, the
following options are valid:
•  Use 4 computing nodes and ask for 32 cores. Each node will use

8 gigs of memory and 8 cores.
•  Use 8 computing nodes and ask for 32 cores. Each node will use

4 gigs of memory and 4 cores.
•  Use 8 computing nodes and ask for 64 cores. Each node will use

4 gigs of memory and 8 cores.
•  But the following options are not valid:

•  Use 2 computing nodes. Each node will need 16 gigs of memory.
•  Use 16 computing nodes and ask for 256 cores. The maximum

number of cores for this job is 128.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU
4.  Hands-on session

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running with a GPU

•  The official release of OpenFOAM® (version 2.2.0), does not support
GPU computing.

•  To use your GPU with OpenFOAM®, you will need to install the cufflink
library. There are a few more options available, but I do like this one
and is free.

•  To test OpenFOAM® GPU capabilities with cufflink, you will need to
install the latest extend version (OpenFOAM-1.6-ext).

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running with a GPU

•  You can download cufflink from the following link (as for 15/May/2013) :
http://code.google.com/p/cufflink-library/

•  Additionally, you will need to install the following libraries:
•  Cusp: which is a library for sparse linear algebra and graph

computations on CUDA.
http://code.google.com/p/cusp-library/

•  Thrust: which is a parallel algorithms library which resembles the
C++ Standard Template Library (STL).
http://code.google.com/p/thrust/

•  Latest NVIDIA CUDA library.
https://developer.nvidia.com/cuda-downloads

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running with a GPU
What is cufflink?
cufflink stands for Cuda For FOAM Link. cufflink is an open source library
for linking numerical methods based on Nvidia's Compute Unified Device
Architecture (CUDA™) C/C++ programming language and
OpenFOAM®. Currently, the library utilizes the sparse linear solvers of
Cusp and methods from Thrust to solve the linear Ax = b system derived
from OpenFOAM's lduMatrix class and return the solution vector. cufflink
is designed to utilize the coarse-grained parallelism of OpenFOAM® (via
domain decomposition) to allow multi-GPU parallelism at the level of the
linear system solver.
Cufflink Features
•  Currently only supports the OpenFOAM-extend fork of the

OpenFOAM® code.
•  Single GPU support.
•  Multi-GPU support via OpenFOAM® coarse grained parallelism

achieved through domain decomposition (experimental).

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running with a GPU
Cufflink Features

•  A conjugate gradient solver based on Cusp for symmetric matrices (e.g.
pressure), with a choice of

•  Diagonal Preconditioner.

•  Sparse Approximate Inverse Preconditioner.

•  Algebraic Multigrid (AMG) based on Smoothed Aggregation
Precondtioner.

•  A bi-conjugate gradient stabilized solver based on CUSP for asymmetric
matrices (e.g. velocity, epsilon, k), with a choice of

•  Diagonal Preconditioner.

•  Sparse Approximate Inverse Preconditioner.

•  Single Precision (sm_10), Double precision (sm_13), and Fermi Architecture
(sm_20) supported. The double precision solvers are recommended over
single precision due to known errors encountered in the Smoothed
Aggregation Preconditioner in Single precision.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Running with a GPU
Running cufflink in OpenFOAM-extend project
Once the cufflink library has been compiled and in order to use the library in
OpenFOAM® one needs to include the line

 libs ("libCufflink.so");

in the controlDict dictionary. In addition, a solver must be chosen in the fvSolution
dictionary:

 p
 {
 solver cufflink_CG;
 preconditioner none;
 tolerance 1e-10;
 //relTol 1e-08;
 maxIter 10000;
 storage 1;//COO=0 CSR=1 DIA=2 ELL=3 HYB=4 all other numbers use default CSR
 gpusPerMachine 2;//for multi gpu version on a machine with 2 gpus per machine node
 AinvType ;
 dropTolerance ;
 linStrategy ;
 }

This particular setup uses an un-preconditioned conjugate gradient solver on a single
GPU; compressed sparse row (CSR) matrix storage; 1e-8 absolute tolerance and 0
relative tolerance; with a maximum number of inner iterations of 10000.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Mesh generation using open source tools

Additional tutorials
In the folder $path_to_openfoamcourse/parallel_tut you will find many
tutorials, try to go through each one to understand how to setup a parallel case in
OpenFOAM®.

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Thank you for your attention

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU
4.  Hands-on session

“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

Hands-on session

In the course’s directory ($path_to_openfoamcourse) you will find many
tutorials (which are different from those that come with the OpenFOAM®
installation), let us try to go through each one to understand and get functional
using OpenFOAM®.

If you have a case of your own, let me know and I will try to do my best to help
you to setup your case. But remember, the physics is yours.
“This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.”

