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1 The problem to be addressed

I came across this problem in the course of using the finite element analysis (FEA) program LISA-7
to model the vibration of wooden plates, such as are used as the top and back plates of a violin. LISA
is a low price yet powerful FEA program capable of static and dynamic mechanical analysis, plus
physical modelling of heat conduction, electric and magnetic fields, etc. Because LISA is relatively
easy to use, it has been my choice to introduce myself to FEA as part of a personal interest project
to investigate the acoustics of the violin and viola.

LISA-7 has a library of isotropic and anisotropic elements which can be used for static
problems of elastic deformation. However, dynamic analysis is limited to isotropic materials. This
includes the important function of determining the normal modes of vibration, both their frequencies
and displacement fields. Wood, being fibrous, is orthotropic: that is, its elastic properties are different
in the three principal directions — longitudinal, radial and circumferential — in which the tree grows.
Even thin plywood, with three plies, is stiffer along the surface grain than across it. In order to make
at least some progress towards modelling the normal modes of wood and plywood using LISA, the
question arises: ‘Can some arrangement of isotropic component elements be found which will model
the dynamics of orthotropic materials in LISA with sufficient accuracy?’.

LISA takes as data three mechanical properties of an isotropic material: Young’s modulus F,
Poisson’s ratio v, and the density p. Intuitively, we might expect that placing stiff fibres of isotropic
material along the grain direction in a weaker matrix would give F along the grain larger than F
across the grain. This has been the starting point for my search, though I believe models like this
are used for carbon fibre and other layered composites. Since 3-ply plywood is of uniform thickness,
about 3-5 mm, I judged it appropriate to model the vibration of plywood plates, starting with a
square and graduating via rectangles to more irregular profiles. Before that, however, I have made
comparisons for a square rolled aluminium sheet, aluminium being almost isotropic. The FEA-
experimental agreement for aluminium defines a standard of modelling against which any model
approximating orthotropic behaviour can be compared.

In the course of the study I accumulated experimental results, being frequency spectra and
photographs of the vibrational pattern at each resonant frequency. These now constitute a database
against which other theoretical and finite element models might be assessed. Note, however, that
amplitudes of vibration at the antinodes have not been measured.



2 Experimental determination of normal modes

The resonant normal modes of vibration of an elastic structure are crucial to understanding the dy-
namic response under prescribed driving conditions because, at least for small amplitude vibrations,
the response can be expressed as a sum over normal modes, weighted to match the boundary and
driving conditions. Each normal mode is characterised by a) its frequency and b) its pattern of vi-
brational amplitude over the plate’s surface. For the flat plates examined in this study the resonant
frequencies can be determined by time spectrum analysis of tap sounds, which are the waveforms
recorded through a microphone when the plate is tapped with a knuckle at various positions over its
surface. These frequencies should coincide with resonances when the plate is excited by a steady si-
nusoidal driving pressure wave from, say, a loudspeaker. Resonance is manifest in the classic Chladni
figure experiment! in which particles of dust are sprinkled over the plate, placed horizontally over
the loudspeaker. Under the driving waveform the particles bounce around on the plate until most
have settled in regions of nominally zero vertical velocity. As the frequency is varied, resonance can
be judged from how vigorously the particles bounce about and from the crispness of the Chladni
figure.

Resonances depend strongly not only on the mechanical properties of the plate but also on
the way it is held — the boundary conditions. For a rectangular plate the most easy case to treat by
analytical elasticity theory is that in which all four edges are simply supported. At a simply supported
edge of a horizontal plate the vertical component of displacement is zero, but the plate is free to tilt
locally, as if hinged. There are then no moments on the edge, so the plate remains locally flat at
the edge, meaning that the second derivative of displacement there is also zero. Whilst the simply
supported boundary condition is easy to realise in the static two-dimensional case of a narrow beam
between supports (just rest the beam on straight parallel supports), it is experimentally perhaps the
most difficult set of conditions to realise for a vibrating plate. It would involve clamping all four
edges between horizontal rollers running precisely along the edge. In contrast, the simplest case to
achieve experimentally is a free plate, resting on three or four very soft, spongy supports just above
the exciting loud speaker. Unfortunately this is perhaps the most difficult case for mathematical
elasticity to model, and research papers are still being written on the topic. Nevertheless it can
in principle be modelling in LISA by having the plate free of all constraints. For this reason my
experimental studies have been on free rectangular plates.

Figures 1 to 4 illustrate these two complementary techniques of measuring normal modes.
Figure 1 is a tap waveform from a plywood rectangle detected on a recording quality capacitance
microphone and captured using the Goldwave digital software. It shows a pattern of beats in the
train of the impulse around the frequency of 217 Hz, as measured by counting cycles. The rectangle
was Far Eastern plywood, 3-6 mm thick, 262 mm along the surface grain direction and 370 mm
across. Figure 2 is the Fourier spectrum of this tap sound as produced by the WaveSpectra software.
The cursor is set on the small peak at 218 Hz, but two larger peaks can be seen at 207 Hz and 230
Hz. These account for the pattern of beats. Other peaks can be distinguished at 16, 65, 110, 268,
283, 336, 357, 442, 525 and 565 Hz. The error in placing the cursor is about +2 Hz. The 16 Hz peak
is probably spurious. From analysis of six tap sounds made by knocking at different positions on the
rectangle, a fairly consistent list of significant frequencies becomes clear. These are:

64, 101, 176, 207 (largest), 231, 266, 333, 441, 562, 603, 629 Hz. (1)

!Named after the central European physicist Ernst Chladni, 1756-1827.
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Figure 1: Waveform of tap sound from free plywood rectangle 262mm along grain x 370mm across.
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Figure 2: Frequency spectrum of waveform in Figure 1.

Figure 3: 270 Hz Figure 4: 562 Hz

Chladni figures were obtained by laying the plate horizontally on top of an upwards-directed
loudspeaker, the plate being supported 2 or 3 mm above the speaker on three or four crumbs of
upholstery foam. Dust was sprinkled over the plate — a mixture of dry soil and fine peat. A woofer
speaker was used up to about 200 Hz and a smaller speaker above that, up to about 1700 Hz. A
digital tone generator delivered a continuous sine wave into the loudspeaker and the volume was
adjusted until the dust particles started to dance. The soil collects mainly at positions of zero or



small vertical velocity (that is, velocity transverse to the plate). These are the node lines. Smaller,
less distinct islands of dust sometimes remain at the antinodes because the plate surface locally is
exactly horizontal, meaning that there is no component of force on the particles parallel to the plate.
The position of the plate over the speaker is adjusted such that excitation is at an antinode. Where
two or more modes have very similar frequencies, it is usually a delicate operation of adjusting the
loudspeaker to obtain the Chladni figure for only one mode. A Chladni figure would develop in about
a minute, as illustrated in Figures 3 and 4 for the plywood plate. The surface grain runs vertically
in these pictures. The frequency was set initially at a dominant frequency in the tap-tone spectra,
but sometimes adjusted by a few hertz by hand to obtain the most vigorous vibration and sharpest
pattern.

3 Comparison for an isotropic plate

This section addresses the question of how close an agreement can be expected between finite element
modelling and experimental measurement for the simplest case of an isotropic material, for which
LISA does offer modal analysis. We should hope for quite good agreement for the rolled aluminium
plate. This was 1-0 mm thick as measured with a screw micrometer, and almost square at 302-9 mm
along the rolling direction by 301-8 mm across.

From the spectra of tap tones I obtained the dominant frequencies, and then drove the
plate at a selection of these frequencies with the loudspeaker as described above. Figures 5 and 6
show predicted and experimental Chladni nodal patterns for eight resonances. The curving of node
lines near what would otherwise be points of intersection can be attributed to mechanical damping.
Damping broadens the resonance, including small components of the modes higher and lower in
frequency. A few other modes gave Chladni figures as clear as those in Figures 5 and 6, including
the ring mode at 64 Hz. However others were difficult to distinguish. Because the plate is almost
square, some of the modes are almost degenerate. LISA predicts them as distinct in pattern (they
are related by symmetry such as exchanging x and y axes) but occurring at the same frequency. In
reality these modes are superimposed and the balance between them depends sensitively on how the
plates are driven from the loudspeaker. Therefore, where resonant frequencies are close together,
good agreement with experiment cannot be expected. Agreement is also poor at low frequencies
where a general shaking of the plate occurs but the Chladni figure is indistinct.

LISA calculates both modal frequencies and modal patterns of transverse displacement. The
contours of zero displacement correspond to Chladni figures. Hence, where experimental patterns
are clear, they could be matched unambiguously with the model. In the LISA modelling the plate
was represented by a 36 x 36 array of square quad8 shell elements which can be seen in the top right
LISA image in Figure 5. They had these properties: thickness 1-0 mm, Young’s modulus 70-3 GPa,
Poisson’s ratio 0-345, density 2720 kg m™>. The density was chosen so that the weight of the plate
was 248 g, as measured. This is close to published densities of aluminium. Young’s modulus and
Poisson’s ratio were taken from published tables.

Table 1 compares all the predicted and experimental frequencies. Overall the agreement is
highly satisfactory. Note that because the plate is free, the only constraint coming from its own
weight, no constraints are added to the LISA model?. A consequence of this is that the six lowest

2The finite element matrix is singular when the plate is completely free of constraints and some FEA codes will not
tolerate this condition. They require, for example, that supporting soft springs be modelled too. LISA does tolerate
no constraints, in which case the first six modes correspond to rigid body translations and rotations. For some other
calculations I have added 3 constraints on displacement, in which case the first mode with deformation is mode 4.



modes describe bodily translations and rotations of the plate without distortion. That is why the
lowest vibrational mode number is 7.

mode LISA (Hz) Expt (Hz) || mode LISA (Hz) Expt (Hz)

7 36 21 357 351
8 52 50 22 359 361
9 67 64 23 413 411
10 93 101 24 437 431
11 93 98 25 459 452
12 166 167 26 543 537
13 167 27 547

14 170 188 28 556 551
15 185 190 29 586 582
16 210 214 30 587

17 283 277 31 589 592
18 284 32 664

19 319 314 33 667 658
20 336 336 34 768 754

Table 1: Comparison of normal mode frequencies (Hz) predicted by LISA and measured experimen-
tally for a 302 mm square, 1 mm thick flat aluminium plate.
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Mode 20, 335 Hz
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Figure 5: LISA depictions of contours of transverse displacement in four normal modes of aluminium
plate 302 mm square, compared with experimental Chladni figures. The top right LISA image shows
the grid of finite elements.
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Mode 31, 592 Hz

Mode 34, 754 Hz

Figure 6: LISA depictions of contours of transverse displacement in four higher frequency modes of
square aluminium plate compared with experimental Chladni figures.



4 Insights from theory

Though there is no closed form formula for the resonant frequencies of a free plate, we have a guide to
their probable dependence on elastic constants and plate dimensions from the corresponding formulae
for a simple supported beam and simply supported plate. The classical equation of motion for small
amplitude transverse vibrations of a beam is

4 2
% + Mﬂ — (2)
oxt L Ot?
where v is the displacement, x the distance along the beam, I is the moment of cross-sectional
area, which equals bh/12 for a rectangular section. M is its mass, L its length, h the thickness
and b the breadth. The general solution is the sum of eight terms (¢ cos ax + co sin aux + ¢3 cosh ax +
ca sinh aur) cos wt + (5 cos aur + ¢ sin ax + ¢ cosh ax + cg sinh aur) sin wt where the ¢; are constants fitted
to the boundary conditions and
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f being the frequency in Hz. a has dimensions 1/length and can be taken to be a multiple of 1/L.

The resonant frequencies therefore scale with h, L, F and density p according to

fi = Kj%\/g (4)

where the K are constants depending on boundary conditions and order j of the mode. Note that
fj do not depend on the width b of the beam. Eq 4 expresses the common experience that a thicker,
stiffer plate has a higher tap sound than a thinner, limper one.

The dependence on L? rather than L is also surprising, since for a stretched string frequency
is inversely proportional to length ®. However, whilst a string satisfies a second order pde, a beam
satisfies a fourth. The capacity of a beam to sustain compressive and shearing forces requires the
non-oscillatory terms in cosh ax and sinh ax. These are not present in the formula for displacement
of a string.

The formulae above for a beam depend only on the one length dimension, x. When the beam
is widened to become a rectangular plate, three main changes occur:
1. equivalent beam-like modes occur for the y dimension,
2. modes depending on both x and y occur, some of which describe twisting of the plate,
3. plane strain conditions apply and E is replaced by E/(1 -v?). We write 1 -2 = \.

Nevertheless, the frequencies scale with h, L, F and p essentially as Eq 4. The equation of motion
for an isotropic plate is a generalisation of Eq 2:

EI M 9%u
Tv4u+f@ =0 (5&)

3Unlike a beam which is intrinsically stiff, stiffness in a string is due solely to the applied tension. The fundamental

frequency of a string, length L, stretched at tension T' between fixed end grips is f = i‘ /% where p’ is the mass per
unit length. To make this appear closer to the beam formula let the cross sectional dimensions of the string be b and
h so that the total mass is m = p'L = pLhb. Then the stress in the string is o = T/hb and f = i\/% Young’s modulus

FE has the dimension of stress.



where the biharmonic operator is

- Oxt 0r20y? Oyt

The literature on this subject introduces D = Eh3/(12\) = EI/(b)), b being the breadth of the
beam /plate. The equation of motion, as first set out by Love in 1927, then becomes

4 4 4 2
D((’?u J*u au) M@uzo‘ (5b)
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Note that M/(bL) = ph, the mass per unit area.

There is a further generalisation to an orthotropic plate (see next section for fuller explanation
of orthotropic). In a classic early paper on the vibration of rectangular plywood plates R. Hearmon*
quotes the equation of motion

o o*u ot M d%u
D 2D D, Mou 6
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FE, = Young’s modulus in bending in the x direction,

E, = Young’s modulus in bending in the y direction,

vy, = contraction in x direction for unit extension in y when in tension along y direction,
A =1 = vgyvys = 0-99 for wood and plywood,

Gy = in-plane rigidity modulus for shear stresses in the x and y directions.

Hearmon also quotes the resonant frequencies of a specially orthotropic plate (i.e. one in
which the grain is aligned with the edges of the rectangle) with four simply supported edges as

A 22 A
fmn \ / \/ Dy +2—Ds+ b—4D2 (7)

where a and b are the lengths of the plate parallel to the x and y axes respectively, and m and n are
integers which index the nodes. The fundamental is at m = n = 1. Substituting and dropping some
suffices,

4f¢_\/m4 22b2 (Eu+2G))\+ iy E, (8)

This is an important expression for the resonant frequencies for a simply Supported plywood plate.
Observe that, as for the beam, resonant frequencies are directly proportional to thickness, h.

fm,n =

Resonance frequencies for a simple supported isotropic plate can be recovered from Eq 8.
Gy = G is then related to Young’s modulus and a single Poisson’s ratio v by

E
G = = 0-384F for v=0-3, (9)
2+ 2v

“R F S Hearmon 1946 Proc. Phys. Soc. 58 78



0-3 being typical of many materials. The limits on v for an isotropic material are -1 < v < 0-5.
Setting F, = £, = E we have

T h E /b2 a2
_ 4
o = T\ et 2 (10)

where the factor ab = plate area has been taken to leave the argument of the long square root as a
dimensionless number. (The Poisson’s ratio expression in Eq 8 is (V + ﬁ) but this evaluates to 1.)
There is a similarity to Eq 4 for a beam and the beam formula can be recovered by the following
limiting process. Recall that the plate is simply supported on all four edges but the beam is simply
supported only at x =0 and z = L. The two free edges of the beam can be approximated by taking
the two corresponding sides of the plate to infinity. Thus let @ = L and b — oo. Only the term in m?
inside the root contributes significantly and we are left with

f RS i\/E
P as Vo

5 Experimental characterisation of a plywood plate

Compare this with Eq 4.

5.1 Elastic constants of plywood

As already noted, plywood is orthotropic, having three orthogonal two-fold axes of rotational sym-
metry — along the surface grain, across the grain, and through the thickness. It therefore has 9
independent elastic constants. The compliance tensor S;;, when written as a matrix with the stan-
dard reduced subscripts 11 - 1, 22 - 2, 33 - 3, 23 and 32 — 4, 13/31 — 5, 12/21 — 6, relates stress
to strain by

1 v zvm 1
€1 Ei B E 00 05 7; (01 — 1202 — v1303)
—Vi2 L —V32 V120 o 230"
—hi3 V23 . _ V1301 _ V2302 03
8l .| & P E3 (1) 0 0 93] = Eq E, ' Es
€4 0 0 0 G_4 0 0 g4 0’4/G4
€5 0 0 0 0 G% 0 ||os o5/Gs
€6 0 0 0 0 0 g/\% o6/Ge

The matrix is symmetric so the 6 Poisson’s ratios are related through three expressions of the form

V1 V12

E;  Ei
These relations have been used in evaluating the strain matrix on the right. Note that zeros in
Si; mean that tensile stresses do not produce shear distortions and shear stresses do not produce
extensions.

For a model of wood to fit experiment, measurement must be made of the relevant elastic
constants as well as the modal frequencies and Chladni patterns. The material used is known as Far
Eastern plywood. Its surface layers are birch and the middle meranti. It is not easy to measure all
9 elastic constants by simple techniques, but 4 can be found. These are Young’s modulus in the two
orthogonal directions in the plane of the plywood, and two shear moduli by twisting a strip oriented

10



either along or across the grain. Young’s modulus was measured by bending a strip typically 2 or 3
cm wide, 30 or 40 cm long, as a simply supported beam under a central load. FE is given by

1 (Wg\(L\® , )
E = 4b( 7 )(h) ST units, N/m (11)

where W is the load in kilograms, g the gravitational acceleration, d the maximum (central) dis-
placement in metres,, L the length of beam between its supports, A its thickness and b its breadth.
One shortcoming of this method for E is that the result depends sensitively on the thickness h. This
was measured using both a micrometer and dial gauge and found to vary between 3-44 mm and 3-80
mm over the plate, indicating that the original plywood sheet was slightly tapered. Values used in
calculating F are the means of about half a dozen measurements on each specimen.

The shear (rigidity) modulus was measured dynamically by making a strip of ply into the
vertical twisting bar of a torsion pendulum. A metre long beam of wood was screwed centrally onto
one end of the ply strip to form an inverted T shape, and the upper end of the strip specimen gripped
in a vice. The beam was turned through about 10° without lateral displacement and released, and
the oscillations timed. For a static rotation, the angle of twist, 6, is related to the torque 7' (Nm),
length L of the strip and rigidity modulus G by

TL
0 = — 12
ie (12)
where J is a shape factor related to the moment of cross-section of the strip:
1 21 (h 7 (h)’
[3 100\5/ " 200 \ b
G is inversely proportional to the square of period of oscillation t:
4n? LI
=— — 13
o (13)

where I is the moment of inertial of the heavy beam about the axis of rotation. In this measurement
the value of G relates to shear of the strip in the through-thickness direction. With the surface
grain along the strip specimen and the torque forces applied in the through thickness direction 3,
G” = G13 = G5 is measured. Similarly with the surface grain across the specimen G, = Gao3 = G4 is
measured.

The values obtained from several specimens and/or series of measurements using the above
methods are listed in Table 2. The measurement methods used will be simulated using LISA to
promote a close match between the FEA model and reality. The ratio EH/E L =2-95.

5.2 Experimental determination of normal modes of 262 mm plywood square

The techniques of §2 were applied to a 262 mm square of the 3-plywood. Figure 7 shows two
frequency spectra from tapping the square. Though similar, they differ in detail because holding
the plate in different places, and tapping at different places, excite modes in different proportions.
Damping within the wood causes broadening and hence some overlapping of resonant peaks. As a
result a wholly consistent sets of frequencies cannot be determined from the spectra, though about
a dozen frequencies appear in most spectra.

11



ST units

total thickness 3-4t03-8mm | 0-0036 m
birch veneers, typical 0-53 & 1-00 mm

central meranti layer 2-07 mm

density 0-68 g/cc 680 kg/m?
Young’s modulus, grain parallel to strip E =FE 10-2 GPa
Young’s modulus, grain across strip E, =Fs 3-46 GPa
Shear modulus, grain parallel to strip G| =G5 0-46 GPa
Shear modulus, grain across strip G, =Gy 0-55 GPa

Table 2: Dimensions and material properties of Far Eastern plywood as measured on strip specimens.
1 GPa = 10° N/m?.
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Figure 7: Frequency spectra of two tap sounds from the 262mm plywood square. Frequency range 0
to 1500 Hz.

The resonance peaks in the spectra guided the search for the corresponding Chladni figures.
The loudspeakers available were useful over the range from about 40 Hz to 1800 Hz. Considerable
pains were taken to isolate the Chaldni figure of only single modes in frequency ranges where two
or more modes have much the same frequency, as occurs over the range 1070 to 1150 Hz. Figure
8 presents photographs of all the Chaldni resonances determined. The surface grain is vertical in
all these photographs. In this array presentation rows are labelled m and the columns n, where the
mode m — n means that there are m node lines in the = direction and n along the y: that is, there
are m dark, roughly vertical node lines, parallel to the grain, and n roughly horizontal lines (across
the grain). Table 3 lists the best estimates of the corresponding frequencies. The modes 0-4, 1-4,
and 5-0 were particularly difficult to disentangle so the errors for these could be as large as 20 Hz.
Otherwise uncertainty is about 4 Hz. (Mode 6-1 is identified with the resonance at 1736 Hz, but this
was the only mode not confirmed by Chladni figure.)

The two graphs in Figure 9 display the dependence of resonant frequency on the mode
numbers m and n. The upper graph corresponds to reading Table 3 by the column (m varies while
n is constant on each curve), and the lower panel by reading in rows. Over this range of frequencies
each curve is roughly parabolic. Within the approximation of terms up to degree 2, the frequencies
f are roughly approximated by the doubly quadratic expression

f o~ 79-2-97-4m—109-3n+61-9m? +39-5mn+90-0n® - 3-8m?*n—4-4mn? — 1 -2m?*n?

12
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Figure 8: Photographs of experimental Chladni figures for a 262 mm square plywood plate. The
surface wood grain is vertical on the page, parallel to the y axis.




2000

1500 2 -
Hz
n=4
L
1000
3
500
n=0
n=2
n=1
y : . . . . .
a 1 2 3 4 5 &

m = number of nodes along x direction

2000

Chart Area
&
m=6 <
1500 " ..
Hz i
m=5 & /
“ fa
1000
m=4
500

3 4
n = number of nodes along y (grain) direction

Figure 9: Variation in frequency of mode families with increasing number of node lines in x direction
(lines parallel to the grain).
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55 240 603 1114

127 163 334 663 1198

354 388 520 816 1327

692 726 834 1080 1532

1142 1180 1250 1490

6 | 1696 1736 1836

Table 3: Experimentally determined frequencies of modes identified in Figure 7.
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which can be neatly written in matrix form as

79-2 -109-3 90-0\ (1
(f) ~(1 m m*)|[-97-4 395 -4-4||n
61-9 -3-8 -1-2/\n?

This is an empirical fit; clearly other quadratic and higher polynomials could be fitted to the data.

What is perhaps more interesting is to see where these frequencies lie on a piano keyboard.
Figure 10 shows a grand piano keyboard with coloured spots at the frequencies of the mode families
for m varying, n fixed. n =0 is red, n = 1 is purple, then green, turquoise and blue. Observe how the
low resonant frequencies are sparse but the higher ones bunch together. This is a consequence of the
logarithmic nature of perceived pitch. I venture at this juncture to conjecture on the consequences
of this distribution of modal frequencies for a stringed musical instrument, such as a ’cello. A good
quality of sound probably requires a fairly even spacing of resonances across the compass of the
instrument. Figure 10 shows a very uneven spacing, with few in the lowest register and significant
bunching about two octaves about middle C. This bunching is partly a consequence of the mode
degeneracy occasioned by the square symmetry of the plate. Asymmetry is more likely to spread
the resonances evenly. An instrument with these resonances could be weak and uneven in the lowest
and possibly harsh in the higher.

NIRRT

Middle C

Figure 10: A piano keyboard with coloured spots marking the modal frequencies in Table 3.
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6 Development of a 2-D shell model of orthotropic material

6.1 2-D quasi-orthotropic shell finite elements

This section describes attempts to model the vibration of thin plates of uniform thickness in LISA
using isotropic two dimensional quadratic ‘quad8’ shell elements. The first stage is to produce
Young’s moduli £, £, matching experiment.

The virtual quasi-orthotropic material will be made from parallel strips of stiff (A) and com-
pliant (B) isotropic materials. The starting point for analysis is the arithmetic of combining springs
in parallel and in series. This is because along the direction of the strips they act as elastic strips in
parallel whilst across the strips they are in series. By considering the forces and displacements of N
springs of equal length in parallel it is straightforward to show that the effective spring constant is

ny n9
E. = —FE1+—=Fy+... 14a
parallel N 1 N 2 ( )
where n; of the springs have stiffness E;. Transferring this to strips of elastic material in parallel,
the effective Young’s modulus is the sum of Young’s moduli for the component materials weighted
by their volume fraction p. Similarly, the effective stiffness of IV springs in series is the weighted sum

of reciprocals
1 ni 1 + n9 1

——+ —— +
Eseries N El NE2

Choose materials A and B to have E4 > Ej| and Ep < E, and solve the two simultaneous equations

(14b)

1 1 1-
p 7P (15)

Ey=10-2=pE4+(1-p)FE —_— == = .
I pEa+(1-p)Eg, 5 316 E, By

The graphs in Figure 11 illustrate these functions and show that the largest separation of the curves
is near p = 2/3. In forming the finite elements in LISA it may be convenient to have their widths
a simple multiple of some suitable unit, so I will choose p = 2/3 exactly. This then requires that
E,=14-615 GPa, Eg =1-367 GPa.

15 | Young's modulus, E

EA.

Ep

Volume Fraction of Stiffer Material, A

0.2 0.4 06 | 0.8 1

Figure 11: Effective Young’s moduli E), E, as a function of volume fraction p of stiff material A in
compliant material B. The vertical scale is in GPa.
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Since LISA is being used to model the vibration of plates, LISA will also be used to check the
values of Ej; and E, by modelling the static measurement methods of §5.1. Accordingly I constructed
in LISA a model of a thin strip in bending with these parameters:

e 30 elements (10 ABA sets) wide in z direction, with materials in order ABAABA....AABA, by
30 elements long in vy,

e an alternative, finer meshed model with 60 elements wide in x, forming 20 ABA units, by 60
elements long in vy,

e [F4=14-615 GPa, Eg =1-367 GPa as above, with Poisson’s ratio 0 -3 in the first instance.
e length L =0-5 m, width b= 0-03 metres, thickness h =0-00352 m,
e constraint on all nodes at y =0 and at y =0-5 set to z displacement = 0,

e force of 1 newton applied in z direction at every node at central position, y = 0-25, making the
total force 61 N.

Three simulations were made with 2-D quad8 or quad9 shell elements in the above models:
1. bending to determine Ej; and E,. These give £} =10-204 GPa, E, = 3-656 GPa.
2. uniaxial stretching to determine Ej =10-208 and E, = 3-64 GPa,
3. twisting to determine G| =1-51 and G, =3.05 GPa,

The agreement between the bending and stretching methods for the two Young’s moduli is encour-
aging, as is the closeness of the simulated values to the required ones. However, the shear moduli are
clearly far too large — between three and six times larger than the measured ones. This is not un-
expected since, in this model of adjacent strips, Young’s modulus in the through-thickness direction
will equal that in the along-grain direction. In reality plywood is weak and compliant through its
thickness since this direction corresponds with the radial direction of wood growth. At least LISA
predicts that G, > G| in agreement with experiment.

6.2 LISA 2D shell model compared with experiment

The predicted modal frequencies for this 2-D shell element quasi-orthotropic material for the 262 mm
square plywood plate are listed in Table 4. The corresponding experimental values of Table 3 are
reproduced in italics in the row below. At a glance we see that agreement is quite good for the 0 —n
and m — 0 modes but poor in all other cases, as the predicted frequency exceed the actual typically
by 20% to 40%.

LISA does predicted the general trend in frequency and does separate the corresponding pairs
of modes (0-2,2-0), (0-3,3-0) etc. For an isotropic plate these would be at the same frequency.
Table 5 shows the ratio of experimental frequencies of mode pairs m — 0 to 0 — n. Using the relation
that f o< /F in Eqs 4 and 10, the table has been artificially extended to zero frequency by taking
the ratio of square roots of the Young’s moduli. There is a steady trend to decreasing ratio with
increasing frequency. However, Eq 8 would predict a constant value of 1-717. For all other modes
the fact that the FEA frequency far exceeds the measured can be attributed to this 2-D model being
too stiff in twisting, a fact already established by the twisting model for determining G| and G| .
There seems no point in finessing this 2-D model, say by adjusting F4 and Ep. Rather it seems
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clear that closer agreement will require a more sophisticated quasi-orthotropic model in which F in
the through thickness dimension can be adjusted independently to a much lower value.

The need to move to a more complicated 3D model is disappointing because 2D elements have
significant advantages for thin-walled structures. Having fewer nodes, they produce smaller files, plus
they have the through-thickness behaviour built into the elements. As with all numerical procedures,
convergence to the correct solution usually requires a sufficient number of small elements, meaning
very many nodes. LISA is a 32-bit computer program running under Microsoft Windows and so
is limited to 2Gb of memory by the operating system no matter how large the physical memory.
Therefore 3D models will inevitably be limited in size and hence fineness of mesh.

n
m| 0 1 2 3 4 5
FEA 2D 0 208 570 1116 1854
Ezpt 206 566 1080
1 114 260 663 1204 1925

55 240 603 1114

2 | 122 304 517 899 1436 2155
127 163 334 663 1198

3 | 345 482 794 1214 1784
354 388 520 816 1327

4 | 671 806 1152 1620 2224
692 726 834 1080 1532

5 | 1108 1247 1596 2105
1142 1180 1250 1490

6 | 1659 1782 2145
1696 1736 1836

Table 4: Comparison of resonant frequencies of a 262 mm square plywood plate as modelled by
2-D finite elements (LISA) and determined experimentally (italics). The finite elements are quasi-
orthotropic 2-D shell using E4 = 14-615 GPa, Fg = 14-367 GPa, v =0-3.

Static value | mode Hz ratio

JE, 1-86 1-717
Bl 319
20 127 | 1-622
0-2 206
30 354 | 1-600
0-3 566
40 692 | 1-560
0-4 1080

Table 5: Ratios of experimental frequencies for modes with node lines parallel with one plate edge.
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7 3-D solid model of orthotropic material

7.1 Basic 27-element building block

There are many ways in which the 2-material AB composite shell elements of §6 could be generalised
to three dimensions with sufficient parameters to allow a fit to the measured elastic constants. Similar
to the 2D case, the material will be built by translating and scaling a basic cuboidal block comprising
an assemblage of isotropic hex20 finite elements. I have taken the view that this composite building
block be symmetrical, or almost symmetrical, in the thickness dimension, just as the plywood itself
is a sandwich of meranti between two sheets of birch. Unless there is such symmetry, I suspect
that unrealistic bending or twisting of the modelling plate could occur. Accordingly, the building
block has three layers with 9 elements in each. Moreover, the two outer layers will have the stiffening
running parallel to the surface birch grain, whilst in the central layer it will run parallel with the grain
of the meranti. I use two materials in each layer, requiring four materials, A, B, C, D, altogether. In
addition, I have decided to keep all finite elements the same size within this building block. Finally,
the material is to be as homogeneous as possible. This requires that adjacent elements be made of
different materials as far as possible; they should not aggregate into extended clumps of elements of
the same material when tessellated through the structure.

The design of building block is shown in Figure 12. The three diagrams in the top panel
show the elements in each of the three layers through the thickness, whilst the bottom panel is a
perspective view. Figure 13 shows how the building block is tessellated and scaled to form a plate.
This plate has three blocks through the thickness; that is, 9 elements.

Having proposed this 27-element building block my approach has been to develop it in three
stages:

Figure 12: 27-element cube of materials A, B, C, D used as the ‘building block’ for a 3-D solid quasi-
orthotropic material. Upper frames show the three layers of hex20 elements through the thickness.
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Figure 13: Model of 262 mm square plate. The detail shows the three layers of the basic 27-element
cuboid through the thickness, y direction.

1. develop an analytical formula which allows calculation of values of the four Young’s moduli,
Ea, Ep, Ec, Ep, so that four macro elastic constants Fy = Ej, Ey = E,, G5 = G|, G4 = G of
Table 2 are matched fairly closely,

2. optimise these values in some way so that LISA produces as good a match as seems possible
to the resonant frequencies and vibrational patterns of a square plywood plate, used as a
calibration reference,

3. apply the model, thus optimised on the reference square, to other plywood plates of different
sizes and shapes and make comparisons with experiment.

In practice two approaches to optimisation have been followed. One was applied to a model with
three blocks, 9 elements through thickness, and is descibed in the next section. The other was applied
to a model with only one block, 3 elements, through thickness and is described in §10.

7.2 Spring approximation to elastic constants

The first task, therefore, is to develop formulae for the first estimate of values. This is made using
a ‘combining springs’ set of simultanecous equations analogous to Eq 15. Note that F3, Young’s
modulus in the through thickness direction, will feature even though I have not been able to measure
it. Adjustment of E5 will be a way to alter G4 and G5, though the precise relation of E3 to the shear
moduli is not analytically determined.

The choice of whether to add the springs which represent E4 etc. in series or in parallel
must observe the constraint that the finite elements remain joined at all their nodes as they stretch.
This means that the springs must first be treated in groups of nine, in layers perpendicular to the
direction of applied force, and so added in parallel. Subsequently the three layers along the direction
of force are added in series. Accordingly I introduce this notation: in calculating F; the combined
modulus of the front layer (along the direct of force) is E11, of the middle layer is Eqo and of the
back layer is F13, and similarly for Es and E3. To simplify the notation further, let A stand for F 4,
etc.. We therefore obtain

Ey1=Ey3 = §(4A+2B+3C),  Eip = §(4A+2B+3D) (16)
1 1 1 1

— = + +
Eq 3B 3E12 3En3
E21=E23 = %(3A+3B+2C+D), E22 = %(6A+2C+D)
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1 1 1 1

= + +
Es 3E51 3FEs  3Ess
E31 = E33 = %(6A+ 3B), E32 = %(60+3D)
1 1 1 1

= + +
Es 3E31 3FE3; 3Ess

Measuring in GPa we require Fy = 10-2, E5 = 3-46. Ej5 is unknown, though we suppose it to be small,
less than Fs. I choose a starting value of 1 and find solutions to the above simultaneous equations

using a computer algebra package. As examples, for F3 =1
Set D=C. Then A = 1-88, B = 41-62, C = 0-349,

Set D=2C. Then A = 1-883, B = 41-62, C = 0-262.
and for F3=0-1

Set D=2C. Then A = 2-04, B = 41-77, C = 0-0251, Material M3,

Set D=3C. Then A = 2-04, B = 41-77, C = 0-0201.

The very large ratio of Ep to F¢ is quite remarkable.

G4 and Gy are determined by using the solution set as input to LISA simulations of beam
torsion. Similar simulations of beam bending and stretching can be used to check the values of F;
and F» for the composite material. Of course, Poisson’s ratio does not feature in Eq 16 so in the first
instance I take vg = vg = vo =vp = 0-3. Figure 14 is an example of a bend model for F,, and Figure
15 a torsion model for G5. These were calculations for material M3 above. When used in Eq 11 and
12 respectively, they give Fy = 3-11 GPa, fairly close to the experimental value, but G5 = 0-53 GPa

is too large.

The setting up and running of LISA static models to iterate all the elastic constants has
proved quite a time consuming process. The highest order 3D element in LISA is the 20 node

Displacement in ¥
n 7.187E-08
-0.05145
-0.
-0.
=B
-0.
-0.
-0.
-0.
-0.
=
-0.
=
-0.
= 0.

-0.

1029
1544
2058
2573
3087
3602
4116
4631
5145
566

6174
6639
7203
7718

Figure 14: LISA screen displays showing quasi-orthotropic beam in 3-point bending to determine Fs

(left), and predicted deflection (right).
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Displacement in ¥
0.000796
0.0006839
0.0005838
0.0004776
0.0003715
0.0002653
0.0001592
5.307E-05
-5.307E-0%
-0.0001592
-0.0002653
-0.0003715
-0.0004776
-0.0005838
-0.0006899
-0.000796

Figure 15: LISA screen displays showing quasi-orthotropic beam in torsion to determine G| = G5
(left), and predicted twist (right).

‘hex20” and a key question is ‘How many elements are required to achieve convergence?’ — which we
trust will be to the physically correct values! The traditional way of answering this question is to
repeat the calculation with increasing refinements of mesh. However, a limit is soon reached set by
computer memory for a 32-bit program. To retain the quasi-orthotropic properties, the 27-element
building block must be tessellated in its entirety to model a beam or plate. Suspecting that several
elements would be required through the thickness, I started with three blocks, making the beam or
plate 9 elements deep. This limited the number of blocks across the surface area, x — z plane, to
about 10 by 10 (30 x 30 elements). In later numerical explorations, described in §10, the number of
blocks through thickness has been relaxed to two and then one (6 or 3 elements), allowing somewhat
finer meshing over the plate’s surface.

For a few examples, Table 6 summaries the elastic constants of five quasi-orthotropic ma-
terials. M3 was the example cited above. M4, M4a and M4b differ only in Poisson’s ratio, which
is the same for all four constituent materials A, B, C, D. For M5 E4 and Ep have been adjusted
significantly to make this material have constants close to the experimental values. Since the latter
are subject to experimental uncertainty, I consider that searches for an even closer fit to the four
statically determined elastic constants is not worthwhile. Rather these candidate materials should
be input into dynamic models, and a significant number of predicted normal modes compared with
experiment. This, after all, has been the object of developing an orthotropic model.

Material ID EA EB EC ED v E1 E2 G5 G4
M3 2-037 41-775 0-0251 0-0502 0-3 |10-53 3-11 0-531 0-679
M4 2-043 41-780 0-0176 0-0351 0-3 | 10-46 3-02 0-459 0-556
M4a 2-043 41-780 0-0176 0-0351 O0-1 | 10-49 2-94 0-543 0-652
M4b 2-043 41-780 0-0176 0-0351 0-45|10-44 3-49 0-413 0-505
M5 2-423 40-000 0-0176 0-0351 0-35|10-23 3-50 0-475 0-562

Table 6: Effective elastic constants of various quasi-orthotropic materials as determined by FEA-
simulated bending and torsion tests. The model is based on the 27 element cube in Figures 12, 13,
14 and 15.
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8 Modelling normal modes of plywood reference square

8.1 First estimate compared with experiment

The calibration reference specimen was the same 262 mm plywood square described in §6.2. Since
material M5 has elastic constants quite close to the values in Table 2, it can be our first choice for
modelling normal modes. The results are summarised in Table 7.

Material M5 n
m 0 1 2 3 4
FEA 3D 0 199 484 829
Ezxpt 206 566 1080
1 71 236 516 849

55 240 605 111/

2 | 116 180 349 603 939
127 165 334 664 1198

3 | 312 362 523 771
364 388 520 816

4 | 577 631 760
692 726 834

5| 896 930
1142 1180

Table 7: Comparison of resonant frequencies of a 262 mm square plywood plate as modelled as
material M5 using the 3D finite elements of Figure 13, and determined experimentally (italics).

This 3D model is prone to Out of Memory errors due to its large size (8100 elements). Hence
the number of modes which can be determined is limited; on a 32 bit operating system, Windows
XP, up to 17 modes can be determined, this rising to 25 on the 64 bit Windows 7 system. Since 3 or
4 or these modes are body translations and /or rotations, the number of relevant, deformation-only
modes is 21.

Comparison of Tables 4 and 7 shows that overall the agreement with experiment is consider-
ably better with the 27 element 3D model than with the 2D model of §6.2, although the agreement
for the beam-like m — 0 and 0 —n modes is distinctly poorer. Various measures of goodness of fit can
be proposed. Since pitch is perceived as ratios of frequencies, I have opted for the single measure

_ fFEA ? '
Q = Zd: -1 (17)

f expt

that is, the sum of squared fractional errors. On this measure material M5 scores 0-48 over the 21
relevant modes. Over the same modes the 2D model of §5.2 scores 3-13. This comparison seems
enough for us to conclude that the 3D, 27 element model with material M5 parameters is a moderately
successful orthotropic model for plywood.
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Naturally these questions quickly arise:
1. How good a match can be found by varying the input parameters?
2. What is the most efficient way to determine a ‘best’ set of input values?

3. Does this model, optimised on a 262 mm plate, give equally good results on plywood plates of
other sizes, including ones with curved edge?

4. Do the best input parameters remain the best when the size and number of elements are changed
— that is, are the material parameters peculiar to a particular meshing of the component?

5. Can an equally accurate but smaller model be made with less than 3 composite blocks through
the thickness?

8.2 Optimisation by gradient search

The first two questions are closely related. The goodness of fit will be measured by @), Eq 17. Then
a ‘best’ fit to experiment involves minimising ) as a function of the 8 parameters E4 to Ep, v4 to
vp. I say ‘a’ best fit rather than ‘the’ best fit because we do not know the form of the hypersurface
@, nor indeed whether it is continuous. Since it takes about 15 to 20 minutes to set up, run and
record LISA for each material, the convergence scheme should require as few evaluations as possible.
Nevertheless, one must accept that 10 to 20 will be needed.

I have examined a steepest gradient method, on the assumption that () is a smooth, con-
tinuous function °. Initially I have taken the four Poisson’s ratios to be equal, thus reducing the
minimisation of () to a search over 5 dimensions. From an initial material definition, vary one of the
independent variables E4, Ep, Fc, Ep, v at a time and calculate an approximation to each partial
derivative by, for example,

0Q  1-Qo

OEy  Eam-Eao
where Qo, F a0 refer to the starting values and @)1, F41 to the perturbed values. I chose about a
4% change in the Young’s moduli and a 10% to 20% change in v because of its smaller influence.
The maximum gradient from the starting position is defined by grad ¢. Within this local linear
approximation, the minimum of ¢ should lie somewhere along the line of maximum gradient, whose
components are given by
Q

OE,’
and similarly for the other four independent variables. Here k is a small positive parameter specifying
points along the line. We do not know the value of k£ at which the minimum of @ is most closely
approached, so I have evaluated @ for two non-zero values, ki, k2. The three points Q(0), Q(k1),
Q(ko) then lie on a straight line (in the space spanned by E4, ... v) which should contain the
minimum of @. I have estimated the position of this minimum by fitting a parabola through these
three points and finding its minimum. This occurs at the value of k& which, in Eq 18b, gives the
required improved values of F4 etc. and hence an improved material. From there the process can
be iterated until no worthwhile further improvement is obtained.

(18a)

Ea(k) = Eao-k (18b)

Table 8 give numerical value for the partial derivatives at M5. Clearly the Young’s moduli of
the central layer in the 27 element cuboid of Figures 12 and 13 dominate. Table 9 uses these partial

®An alternative approach to finding a good fit is described in §10 for a one-block thick model. This gives further
insight into the dependence of @ on the input Young’s moduli A, B, C, D.
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derivatives in Eq 18b with k£ = 0-0005 and 0-001. The parabola through Q(k) for materials M5, M6,
M7 has a minimum of 0-329 at k = 0-0012. Thus k = 0-0012 defines material M8 which is closer to

the optimum than starting material M5.

M5 |vary A vary B vary C vary D vary v
A=FE4 2:423 2-52 2:423 2-423 2423 2423
B=Fp 40 40 415 40 40 40

C=Ec 0-0176 | 0-0176 0-0176 0-0183 0-0176 0-0176
D=Fp 0-0351 | 00351 0-0351 0-0351 0:0365 0-0351
v 0-35 0-35 0-35 0-35 0-35 0-28

Q 0480 | 0-465 0-466 0-469 0472  0-487
0Q/0A etc- -0-16  -001 -1522 -549  -0-10

Table 8: Calculation of partial derivatives 0Q/0A, etc. local to material M5. The values that have

been varied are highlighted in bold.

material M5 M6 M7 M8
k 0 0-0005 0-001 | 0-0012
A 2423 2423 2423 | 2:423
B 40 40 40 40
C 00176 0-0252 0-0328 | 0-0359
D 0-0351 0-0379 0-0406 | 0-0417
v 0-35 0-35 0-35 0-35
Q 0480 0-385  0-339 | 0-329

Table 9: Fitting a parabola to points Q(0), Q(0-0005) and Q(0-001) (materials M5, M6, M7) to
determine minimum at k= 0-0012 (MS).

I carried out a further stage of iteration starting from MS, finding again that C' and D have
the largest effect, though with v having some significance. A and B had almost no effect on Q.
The effect of v is to change the normal frequencies such that modes appear in a somewhat different
order. Much of the fractional error in @ is contributed by the lowest mode, 1-1. For most material
specifications this frequency is close to 73 Hz. However there are sets of values of the independent
variables at which it drops abruptly to about 53 Hz, close to the experimental 55 Hz. The effect is
to cause a jump in @ from about 0-32 down to about 0-19. (One could argue that @ is too course
a measure to discern these finer changes in modal frequencies.) The best fit is with material M10
with specification

A=FE4=2-425, B=40-0, C = D=0-04632, v=0-3525

and has @) = 0-188. It is remarkable that both constituent materials C and D have the same elastic
constants, making the central layer in Figure 12 uniform and isotropic. I have investigated the
changes in modal frequencies and hence in () when only one of the four Poisson’s ratios is changed
and find that almost all effect is due to vg. Table 10 gives the modal frequencies of the optimum
material: compare with Tables 4 and 7. Considering the experimental uncertainties and the small
effect of frequency shift on perceived pitch for all but the lowest notes, the agreement is acceptable.

The above procedure for arriving at some optimum material may seem very involved and

tedious, but bear in mind that a procedure something like this would be required even if the finite
element program did supply genuine 2D orthotropic shell elements. The reason is that nine elastic

25



Material M10 n

m 0 1 2 3 4
FEA 3D 0 203 521 936
Expt 206 566 1080
1 53 246 561 957

55 240 605 111}

2| 112 191 375 658 1071
127 163 334 664 1198

3| 324 384 571 862
354 388 520 816

4 | 619 691 841
692 726 834

5| 991 1031
1142 1180

Table 10: Comparison of resonant frequencies of a 262 mm square plywood plate modelled as opti-
mised material M10 and determined experimentally (italics).

constants or their equivalents must be input to any orthotropic model. Some can be determined by
direct static tests as in §5.1, but others require sophisticated methods, including determining them
from measured normal modes. At least one attempt to determine elastic constants of orthotropic
plates by modal analysis has been published : L. Deobald and R. Gibson, J. Sound € Vibration
1988, 124(2), pp 269-283.

8.3 Weaknesses in the model

The model has not given as close a fit to the experimental values for plywood as did the LISA 2D
sheet model for the aluminium plate of §3. By comparison, it is a poor approximation, but not so
poor as to be of no use in acoustic studies. Two significant shortcomings are apparent:

1. The M10 material, optimised for modal frequencies, does not give the best match to the elastic
constants as determined by static methods. Using the simulated methods for Young’s modulus
by bending and shear modulus by twisting (Figures 14 and 15), M10 has

E=E1=10-35, E, =E,=3-71, G =G5=0-64, G,=G4=0-82GPa.

The shear moduli are respectively 40% and 50% larger than the experimental values (Table
2). T am unable to explain why, though it may be related to the difficulty of achieving the
frequency of the lowest mode, 1-1.

2. There is a frequency dependent inconsistency to the variations 0Q/0A, 0Q/IB, etc. in the
optimisation algorithm. In Eq 18 a, b the goodness-of-fit value () is the sum over 21 resonances.
If instead we split the modes into three groups according to frequency, it becomes clear that
the lowest modes behave quite differently from the highest ones. The trends are shown in Table
11 for small variations in A = E4 etc. about material M8, a stage just before reaching M10. It
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Band 0Q 90Q 9Q 9Q 9Q

< 300 Hz + + + +
300 - 600 Hz + - - - +
600 - 1200 Hz | - - - - -

Table 11: Direction of change in partial derivatives over three frequency bands for material MS8. +
denotes an increase, — a decrease.

is not necessary to show the numerical values to see that this is a serious weakness, potentially
undermining the whole optimisation algorithm. Clearly a linear elastic system should not have
this dispersive behaviour. It implies that the elastic moduli depend of frequency. A similiar
effect was commented upon in §6.2, Table 5 for the 2D shell model. T can merely speculate on
the source of this undesirable quality; it may come from the increasing difficulty of the finite
elements to approximate the increasing curvature of the plate as the number of node lines
increases. This being so, it implies that attempts at optimisation should be carried out only
over limited spans of frequency, even though this would significantly increase the awkwardness
of calculation, increasing the number of LISA runs and requiring a patching together of results.

Even if this frequency dependence did not occur, we could not be sure that material M10
is the overall best approximation to real plywood. The hypersurface Q(A, B,C,D,v) may have
several valleys and hollows. I cannot see how this could be explored except by an exhausting Monte
Carlo-type search, perhaps combined with the above minimum-searching procedure. I have had little
appetite for such a search, though the alternative optimisation approach in §10 comes close to a brute
search using the elastic spring model.

8.4 Effect of changing in-plane size of elements

This subsection gives a partial answer to Question 4 of §7.2.1 regarding the stability of the optimised
model to changes in meshing, and to whether M10 remains the best material as mesh sizes are
changed. The subsection considers the effect of changing the in-plane (z, z) dimensions of the finite
elements; the effect of reducing the number of through-thickness (y) elements is investigated in §10.

The method has been to run LISA several times using the 27-clement block model (Figure
13) with material M10. For each run the number of blocks in the z (across grain) direction was
reduced in steps from 10, and the elements scaled up to maintain the 262 mm width. Thus 5 blocks
implies a scaling by x2. In all cases there were 10 such blocks (30 elements) in the vertical direction
(with grain). The results are presented in Figure 16 for modes up to 2-4.

Perhaps the first thing to note is the anomalously low frequency of 1-1 at 10 blocks wide,
the size at which M10 was optimised. We have already remarked how this 53 Hz value is sensitive
to the input elastic constants E4, etc. Since the number of elements is being changed only in the
x direction, we might expect modes m-0 to be effected much more than ones 0-n. However, this
is not bourne out by the numbers; for example, 0-3 increases as elements are stretched (decreasing
number of blocks) whilst 0-4 decreases. Some modal frequencies such as 2-0, 1-3, 3-2 and 1-4 change
little. Mode 3-3 shows one of the largest changes between 10 blocks and 5 — from 862 Hz to 915 Hz
— but this is only a semitone in pitch. I also made one calculation reducing the number of blocks in
the grain direction from 10 to 8; the numbers of 27-element blocks were 8 x 8 x 3. The change from
the 8 x 10 x 3 mesh of blocks was negligible — no more than 1 Hz in any mode. In general it seems
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Figure 16: Effect of in-plane mesh stretching on modal frequencies predicted by LISA for 262 mm
plywood square. Horizontal axis shows number of 27-element M10 blocks in = direction to make the
262 mm width. The experimental values are shown on the left.

that a scaling up by about 50%, corresponding to a reduction in the number of elements to about
60%, does not greatly affect the predicted frequencies of most modes, and does not alter the order
of modes.
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9 Application of 27-element model to other plywood specimens

This section addresses question 3 in the list of §7.2.1. One critical test of the model optimised on
the reference sequare is whether it adequately predicts the normal modes of other lamella made of
the same Far Eastern plywood.

9.1 Large rectangle 262 x 370 mm

At the beginning of this study I investigated a plywood rectangle 262 mm along the grain by 370
mm across, mean thickness 3 -57 mm. It was from this that the 262 mm square of §5 was cut. My
technique was less developed at that early stage and clearly measurements cannot now be repeated.
Nevertheless tap tones were recorded and several Chladni figures obtained, as presented in Figures
1 to 4 in §2. The corresponding calculations with LISA, material M10, have been made in two ways:

1. by scaling the z, cross-grain direction by 370/262, thus staying with the 10 x 10 x 3 mesh of
27-element blocks, requiring a mesh of 8100 elements in total, 30 x 30 x 9.

2. by keeping almost the same dimensions for each element, but adding four more 27-element
blocks in the z direction to extend to 370 mm (14 x 10 x 3 blocks, 42 x 30 x 9 elements).

The stretching method 1 is clearly equivalent to that of §8.3.

Comparison is given in Table 12 together with the few experimental results. Because of the
32 bit memory limitations already mentioned, the second method, with added elements, could only
calculate 8 useful modes. Agreement between the two FEA methods is sufficiently close not to be of
practical concern, and for several modes the agreement with experiment is good. This is consistent
with the study in §8.3 so overall I consider these results satisfactory.

Stretched Added

Mode Hz Hz Expt
1-1 56 53
2-0 61 60 64
2-1 129 123 99
3-0 167 164 173
0-2 203 204 208
1-2 232 229 232
3-1 236 227
2-2 304 296 268
4-0 330 333
4-1 387
3-2 421 441
0-3 521
5-0 529 564
1-3 536
4-2 572
5-1 588
2-3 609 608

Table 12: Application of optimised material M10 to 262 by 370 mm plywood rectangle. The headings
Stretched and Added denote the two methods of extending the 262mm model to 370x262 mm.
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9.2 Small rectangle 108 x 262 mm

This rectangle was the off-cut when the 262 mm square was sawn from the original 262 by 370 mm
specimen. The spectra of taps tones again pointed out the frequencies to investigate for Chladni
figures. A collection of photographs is shown in Figure 20 overpage, arranged to compare with Figure
8 for the plywood square.

Experimentally I found it quite difficult to obtain good quality figures for some modes, such
as 1-4. Even where quite sharp Chladni figures appeared, for some modes an ambiguity remained as
to which frequency is the ‘pure’ resonance. Figure 17 illustrates this for the 2-2 mode; I have taken
920 Hz as the most likely because the crossing lines are almost straight.

909 920 1002 1024

Figure 17: Chladni figures near mode 2-2 of rectangle 108x262 mm, illustrating the ambiguity in
identifying resonances.

As with the wider rectangle of §9.1, the finite element calculations used scaled (compressed)
elements and/or fewer elements in the x, cross-grain direction, with 10 blocks being maintained
along the grain. Whilst most of the mode shapes predicted by LISA can be identified clearly, the 2-2
and 0-4 modes show some of the ambiguity seen experimentally in Figure 17. Figure 18 compares
the displacement patterns for these two modes as calculated using 10, 6 and 4 27-element blocks
in the z direction. For mode 2-2, the leftmost LISA picture (obtained for the 10 elements of the

10 blocks i blocks in 4 blocks 10 blocks 6 blocks in x 4 blocks
Muoxde 2-2 Mode (-4

Figure 18: LISA predictions of Mode 2-2 and 0-4 according to three different meshs. Material M10.
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original 262mm square compressed across the grain to 108 mm) is similar to the Chladni figures
at 909 and 920 Hz in Figure 17. However the central LISA picture, for 6 blocks, looks very like
the Chladni figures at 1002 and 1024 Hz. For mode 0-4 no LISA image is as simple and obvious
as the experimental figure at 1152 Hz. Indeed the rightmost LISA picture, for 4 blocks, is hardly
recognisable as mode 0-4.

The effect of changing the mesh is summaried in the graphs of Figure 19. This corresponds
to Figure 16 for the 262mm square, except that for the square the elements were being stretched
whereas for the small rectangle they are being compressed. It supports the view that a scaling of up
to about 50% makes only a modest change. Overall, however, the agreement between experiment
and calculation with material M10 is poorer for this specimen than for either of the larger ones.
Modes 0-3, 0-4, 1-2, and 1-4 are way off. It seems that material M10, optimised for the 262 mm
square, cannot be the best approximation for the smaller rectangle. This could prompt a systematic
search for a better approximation, but I have restricted myself to only three other materials — M4,

Expt 4 6 8 10

Number of 27-element blocks in x
Figure 19: LISA calculations of the modal frequencies of the 108x262 mm plywood rectangle with

material M10. The graphs show the effect of changing the number of 27-elements blocks in the z
(cross grain) direction.
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M5, M8 identified in Tables 6 and 9 as stages in the search for the optimium. For each of these the
small rectangle has been meshed with 7 blocks of 27-elements in the z direction, scaled by x0 -59.

The results are even worse than for M10!

Mode 0-2m 221 Hz  Mode 0-3,602Hz  Mode 0-4, 1152 Hz

Mode 1-2, 335 Hz

Mode 2-2, 920 Hz

727
) I

Mode 3-2, 1228 Hz

12649
Mode 4-1, 1269 Hz

Figure 20: Photographs of Chladni figures of various modes of plywood rectangle 108mm by 262
mm. Surface grain is vertical in pictures.

32



9.3 Trapezium cut from 262mm square

The next test piece has been made from the 262 mm reference square by cutting a triangle from one
side. Figure 21 shows the LISA model made by ‘cutting’ a triangle from the upper right corner of the
262 mm square model used in §8. This too used material M10. For about 2/3 of modes examined the
computed pattern of displacements could be identified with an experimental Chladni figure; these
are shown side by side in Figure 22. With the remaining modes there was a general similarity of
pattern, but not enough to justify confidence in a match. These unmatched pictures are shown in
Figure 23.

Figure 21: LISA model of plywood trapezium. Left picture shows whole object with elements
outlined. Red is material A, blue material B. Right picture is detail of one corner.
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127 Hz 120 Hz

245 Hz 238 Hz

313 Hz

452 Hz

m
£
2

693 Hz

986 t0 1015 Hz 883 Hz

1138 Hz 1195 Hz 1419 to 1480 Hz 1223 Hz

Figure 22: Vibrational modes of a plywood trapezium as determined experimentally and modelled

with LISA using the 27-element block model, material M10, 3 blocks (9 elements) through thickness.
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478 Hae

86 Mz 874 He S01 Ha 695 He

1326 He K3 He 1016 He

1374 He 1487 He 1657 Ha 1195 Hz

1606 1z 1726 Hz

Figure 23: Modes of the plywood trapezium for which a match between experiment and FEA cannot
be made with confidence.
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9.4 Plate from stringed musical instrument

The final specimen studied is a large flat plate with curved perimeter, representing the top plate of a
stringed musical instrument like an asymmetric viola. This was cut from the same sheet of plywood
as the other specimens. As previously, tap tones were analysed to pick out peaks in the frequency
spectra, and Chladni figures obtained at or close to these resonant frequencies. The lowest peak was
at 21 Hz, almost outside the bandwidth of the loudspeaker. It proved difficult to obtain any clear
Chladni figure below about 70 Hz; resonance behaviour was manifest through a general shaking of
the specimen, but without causing the particles to congregate in any consistent pattern.

In LISA this specimen was modelled essentially by taking the mesh used in §8 for the 262 mm
square, adding four more blocks in the grain direction and one block across grain, and then deleting
elements which lay wholly or mostly outside the profile of the plate. Finally nodes were moved to
bring them onto the perimeter. All 6795 elements remained of the hex20 type. Figure 24 shows the
mesh. Note that for this specimen the grain runs horizontally in the pictures, left-right.

There was a slight complication in matching the plywood specimen with the finite element
model in that the grains of the two outer layers of the 3-ply were about 8° out of alignment. I have
dealt with this by placing the orthotropic axis in the LISA mesh along the mean direction. Because
of the reduced number of elements, 6795 compared with 8100 for the 262 mm square, LISA was
able to model up to 36 modes before running out of memory. Material M10 was again used. The
30 lowest modes which involve deformation without rigid body translation or rotation, or in-plane
flexing, are illustrated in Figure 25 to 27. In each figure the LISA-computed displacement patterns
are compared with photographs of the Chladni figures. I consider agreement on the shapes of the
figures to be fairly encouraging. The experiemntal and LISA-calculated modal frequencies are listed
in Table 13. Agreement here is not strong, but nor is it too poor to be a useful guide. Note that
some of the higher-frequency modes predicted by finite elements are so close together that they could
not be resolved in experimental reality.

LISA Expt | LISA Expt
29 25 470 500
60 54 507 -
82 72 546 520

100 101 567 560
110 97 597 576
162 128 687 643
204 200 700 697
228 215 705 -

238 226 728 716
286 260 779 737
322 284 785 770

354 331 862 855 - 877
393 370 868 890
433 429 940 9487
457 474 973 988

Table 13: Comparison of calculated and experimental modal frequencies of musical instrument plate,
taken from Figures 25, 26, 27. LISA used material M10.
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43 cm

48-5 cm

Figure 24: LISA finite elements making up model of flat plywood plate, typical of a stringed musical
instrument. The surface grain runs left to right.

37



101 Hz

128 Hz

200 Hz

Figure 25: Comparison of Chladni figures and LISA-computed displacement images of lowest fre-
quency normal modes of musical instrument plate. In the LISA images the red areas have nominally
zero displacement. Material M10, 27-element block model, 3 layers (9 elements) through thickness.
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Figure 26: Mid-frequency vibrational patterns of plywood musical instrument plate, continuing from
Figure 25.
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27: Higher frequency vibrational patterns of plywood musical instrument plate, continuing

from Figure 26.

Figure
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10 Model with 1 or 2 blocks through thickness

All the calculation with the 3D model of §7 have so far used three of the 27-element buiding blocks
through the thickness, as illustrated in Figure 13. Because it would be a great calculational advantage
to have an effective model with fewer elements, I have made a short investigation of the effect to
reducing the number of through-thickness blocks to 2 and 1.

I have also taken the opportunity to explore a different approach to optimising the elastic
parameters A = E4, etc. This merely involved using a numerical program to solve the algebraic
relations in §7.2, Eq 16 for Ej = F1 = 10-2 GPa, E, = E5 = 3-46 GPa, and various small values of
FE3. As with Table 6, I started by guessing E3 =0-1, then 0-05, etc. for v =0-3. Then v was also
varied to 0-4 and other values. For each such model material I ran LISA for the 262 mm reference
square with only 1 block through thickness and calculated a quality @) according to Eq 17, except
limiting it to the lowest 16 modes. This limitation was because

1. we have noted a frequency dependence to the goodness of fit, and the lowest frequencies are
the most important to musical instruments,

2. LISA predicted unphysical in-plane modes at high frequencies (seen only in the 1-block model).

In the numerical solutions the values of A and B varied very little from about 2-04 and 41 -8
respectively. Fs3 changed C' and D. One could vary the ratio C': D, but for a given value of Fj3
this ratio made hardly any difference to the quality @ — I found this surprising. A consequence of
this was that C could be set almost to zero, with all the elastic stiffness of the middle layer being
supplied by the strips of material D! The best material determined by this trial-and-error approach,
called R1, has parameters

A=2.0375, B=41-775, C~0, D=0-10044 GPa.

C was set to 5000 Pa to avoid any potential instabilities in LISA’s matrix solving algorithm.

Having thus optimised R1 on the 262 mm reference square, I applied it to the musical plate
specimen, with both 1 block and 2 through thickness. I also applied the M10 material, optimised
for 3 blocks, to the same plate with 2 and 1 blocks. All these results are summarised in Table 14.
The @ value at the foot of the table shows perhaps surprisingly that M10 gives better results on a
2-block model than on the 3-block model for which it was optimised. Of course, we could not have
known this in advance. The R1 model gives almost as good results, though it is stable only for the
modes listed. T have examined the shapes on the Chladni figures calculated by LISA for these five
models and find them remarkably similar and consistent — they all look as Figure 25, 26, 27. This is
very heartening.

11 Summary and Conclusion

I have wanted to model the vibration of wooden plates, but using the available finite element program
LISA v7.7.1 which is restricted to dynamic models with only isotropic materials. I have attempted
to approximate orthotropic behaviour using an assembly of isotropic finite elements. Initially a 2D
shell approximation was examined in §6, but found to be a poor fit to all modes except the m-0 and
0-n types. I therefore developed a 3D model based on a 3 x 3 x 3 block on hex20 elements, attempting
to optimise the fit to the resonant frequencies of a square plywood reference plate. The starting
point for estimating the input parameters has been numerical solution of analyitic equations for an
assembly of springs in series and parallel.
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Material M10 M10 M10 | RI1 R1
No. of blocks 3 2 1 2 1
Optimised? Y Y
Expt
25 29 27 29 24 27
54 60 59 65 54 61
72 82 77 84 70 78
108 100 97 106 88 98
97 110 106 116 98 109
128 162 154 165 135 151
193 204 196 212 | 173 193
215 228 222 239 196 216
226 239 231 250 | 207 229
260 286 272 291 | 236 262
284 322 310 332 271 300
331 354 340 365 | 299 330
370 393 379 403 325 357
429 433 423 454 | 371 406
474 457 445 476 | 391 426
500 470 466 490 402 438
- 507 486 515 | 411 452
517 546 525 558 449 491
560 567 548 580 | 464 508
576 597 582 611 493
643 687 665 701 | 544
697 700 681 710 | 565
705 687 721 577
716 728 710 739 | 593
@, 16 modes 0-20 0-10 0-32|0-19 0-12

Table 14: Comparison of resonant frequencies in Hz of musical instrument plate for the M10 and
R1 model materials and various number of 27-element blocks through the thickness. The quality
parameter @ is calculated for the lowest 16 modes. The third row in the header indicates whether
the material was optimised for that number of blocks.

Suspecting that many elements through the thickness would be required to model plate
dynamics with any accuracy, I have carried out a series of calculations using 3 blocks, 9 elements
through thickness, this being the maximum number of elements which the 32-bit LISA program
could cope with. The model has been moderately successful, but suffers from a significant weakness
in that the elastic moduli seem to be frequency dependent. Finally I examined a reduced model with
only 1 block, 3 elements through thickness, optimising the properties for frequencies less than 400 Hz
on the 262 mm square reference plate. The simpler 1-block model has given fairly good agreement
with experiment over the lowest 16 modes. Although agreement with experiment is not nearly as
good as for the aluminium plate of §3, I consider the quasi-orthotropic model in LISA 7 adequate
for investigating some acoustic aspects of stringed musical instruments.

John Coffey, August 2012.
The author can be contacted via mathstudio.co.uk.
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