

CALCOLO STRUTTURALE

Commessa: CAR-014-12

Cliente: Cover Technology

Nr. Ordine: 21162 del 19/03/2012

Tavola dei contenuti

1	Intro	duzione	.3
	1.1	Materiali	
	1.2	Geometria della porta	.4
	1.3	Normative e codici di riferimento	.4
	1.4	Carico	.4
2	Desc	crizione del modello	. 5
3	Caso Studio6		
1	Conc	Plusioni	7

1 Introduzione

Scopo del lavoro é l'analisi strutturale di una parete di un container cui si richiede di sopportare secondo le normative UIC e CSC, un carico accidentale pari a 0.4P, dove P è il carico interno netto. Tale parete è costituita da 4 porte *"Full open side"* di due dimensioni diverse. Per tale verifica si è deciso di modellare la porta di dimensioni maggiori sottopendola ad un carico distribuito:

$$L = R \cdot A_{porta} = 160N$$

Le condizioni al contorno sono tali da rispettare i vincoli cui la porta è sottoposta:

- Rotazione libera intorno l'asse di apertura della porta;
- Vincolata nei punti dove agisce l'asta.

Per tale analisi viene impiegato LISA, un programma di analisi strutturale tipo FEM sviluppato da Sonnenhof Holding, una software house canadese .

1.1 Materiali

La porta è costituita da profilati in acciaio al carbonio tipo:

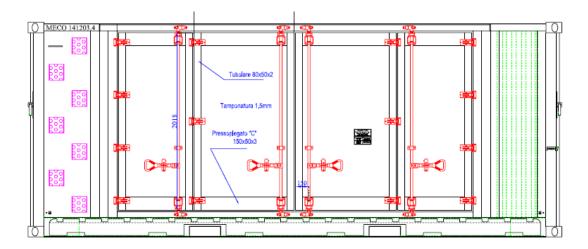
	S 275 JR	
Pacciaio	7860 kg/m³	

aventi le seguenti caratteristiche meccaniche:

Snervamento minimo σ _s	275MPa
Rottura Minima σ _R	430MPa
Modulo di Young E	210GPa
Coefficiente di Poisson υ	0.3

Tensioni ammissibili in condizioni di carico accidentale:

$\sigma_{ammissibili}$	0.75 x 275MPa	206 MPa



1.2 Geometria della porta

La porta è costituita da un telaio esterno in tubolare 80x50x2 e presso piegati di profilo a "C" 150x50x3. La tamponatura è invece realizzata con lamiera grecata di spessore 1.5mm.

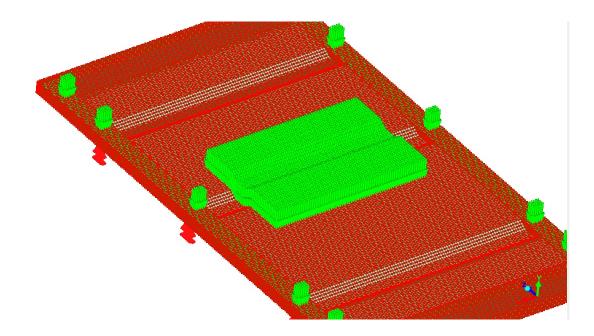
1.3 Normative e codici di riferimento

- CNR-UNI 10011/88: "Costruzioni in acciaio. Istruzione per il calcolo, l'esecuzione e la manutenzione";
- Legge n. 1086 del 05/11/71;
- D.M. del 9/01/96: "Norme tecniche per l'esecuzione delle opere in c.a. normale, precompresso e per le strutture metalliche";
- Circolare Ministero dei Lavori Pubblici N. 156AA.GG./STC: Istruzione per il calcolo, l'esecuzione e la manutenzione";
- D.M. del 16/01/96: Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzione e dei carichi e sovraccarichi".
- Norme UIC e CSC.

1.4 Carico

La parete deve sopportare un carico di 0.4P (P=2500kg) e tenendo conto che la superficie della parete è di 14m² si ha che il carico agente per m² di parete è:

$$R = \frac{0.4P}{A} = 700 \frac{N}{m^2}$$
;

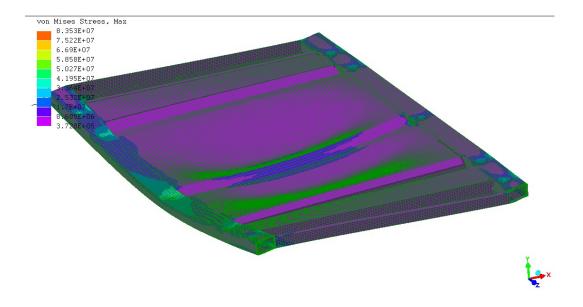


da cui sulla porta agirá:

$$L = R \cdot A_{porta} = 1550N.$$

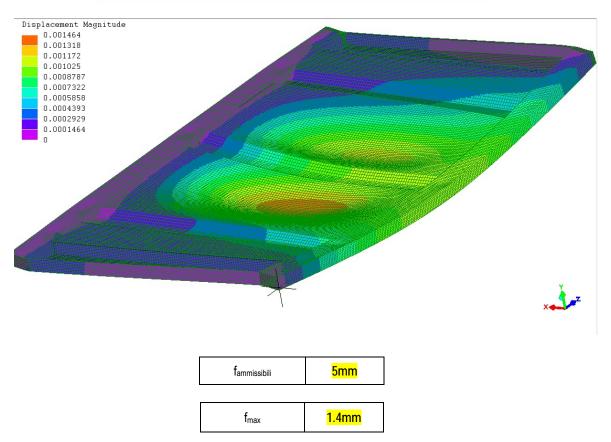
2 Descrizione del modello

Il modello è costituito totalmente da elementi di tipo "Shell" , cioè con risposta di tipo planare , a cui vengono attribuiti gli spessori a seconda dell'elemento che viene simulato.



3 Caso Studio

La porta risulta essere maggiormente sollecitata sulla tamponatura, mostrando una deformazione massima di 1.5mm che comunque al di sotto dei valori massimi. Anche la tensione (si riporta quella di Von Mises) si mantiene al di sotto della massima consentita rimanendo ampiamente nella zona a comportamento elastico del materiale.


σ ammissibili	206 MPa
$\sigma_{\sf max}$	83.5 MPa

4 Conclusioni

Il caso esaminato evidenzia che la porta e, quindi, l'intera parete, nella condizione di carico applicato, soddisfa le condizioni di verifica e risulta pertanto sicuro.

Casalnuovo 16/10/2012

Mecoser Sistemi S.p.A.

Project Manager

